摘要 — 本研究通过一种计算效率高的鲁棒控制策略解决了联网电动汽车的生态自适应巡航控制问题。该问题在空间域中采用非线性电力传动系统模型和运动动力学的真实描述来制定,以产生凸最优控制问题 (OCP)。OCP 通过一种新颖的鲁棒模型预测控制 (RMPC) 方法解决,该方法处理由于模型不匹配和前导车辆信息不准确而引起的各种干扰。RMPC 问题通过半正定规划松弛和单线性矩阵不等式 (sLMI) 技术解决,以进一步提高计算效率。使用实验收集的驾驶周期评估所提出的实时鲁棒生态自适应巡航控制 (REACC) 方法的性能。通过与标称 MPC 进行比较来验证其鲁棒性,标称 MPC 会导致速度限制约束违规。所提出方法的能源经济性优于最先进的时域 RMPC 方案,因为可以将更精确拟合的凸动力传动系统模型集成到空间域方案中。与传统恒定距离跟随策略 (CDFS) 的额外比较进一步验证了所提出的 REACC 的有效性。最后,验证了 REACC 可以借助 sLMI 和由此产生的凸算法实现实时实现。
全球运输部门正经历着向可持续和节能替代方案的变革性转变,这是由于对环境污染,耗尽化石燃料储量的担忧以及减少温室气体排放的迫切需要。在这种情况下,电动汽车(EV)已成为一种有前途的解决方案,提供了更清洁,更有效的移动性选择。在各种类别的电动汽车中,电动摩托车通过结合能源效率,成本效益和降低碳足迹来彻底改变城市通勤的潜力,因此受到了极大的关注。与他们的内燃机(ICE)对应物不同,电动摩托车消除了直接排放,减少噪声污染并需要降低维护,这使其成为个人骑手和基于车队的应用程序的吸引人替代品。但是,电动摩托车的开发提出了需要多学科方法的几项工程挑战。设计精良的电摩托车必须平衡各种因素,包括底盘几何优化,结构完整性,空气动力学效率,动力总成性能和热管理。选择合适的材料,例如轻质铝合金,对于保持最佳的强度与重量比至关重要,同时确保安全性和耐用性。此外,电池技术和能源存储系统的进步在扩展范围和提高电动摩托车的整体效率方面起着关键作用。动力总成的效率决定了车辆的加速度,最高速度和整体范围。电动摩托车设计的关键方面是动力总成配置,其中包括电动机,电池组,电动机控制器和变速箱系统。此外,电池管理系统(BMS)对于监视和调节电池健康,确保安全充电和排放周期以及防止潜在危害(例如过电压或热失控)至关重要。必须仔细实施热模拟和散热策略,以维持电池组和电机的最佳操作条件,从而提高性能和寿命。除了性能优化外,安全性仍然是电动摩托车设计的根本关注点。高级安全功能,包括绝缘监控设备(IMD),再生制动系统和电子稳定性控制,有助于提高骑手安全性和车辆的可靠性。使用有限元分析(FEA)的结构分析用于评估不同负载条件下底盘和Swingarm的机械强度,从而确保耐用性和耐磨性。此外,悬架设置和轮胎选择在增强骑行舒适性,可操作性和整体稳定性方面起着至关重要的作用。本研究论文旨在提供有关电动摩托车原型的设计,模拟和优化的全面研究。该研究涵盖了关键方面,例如底盘开发,动力总成计算,电池管理和安全系统。计算建模和实验验证用于分析设计参数对车辆性能的影响,从而确保效率,安全性和可持续性之间的最佳平衡。通过整合创新的工程解决方案并利用新兴技术,这项研究有助于电动摩托车开发的发展,为城市运输方面的更绿色,更可持续的未来铺平了道路。
“我们很高兴获得这项重要任务,尤其是因为这项技术在电动汽车的能源管理中起着关键作用。” Marelli 电力传动系统部门总裁 Hannes Prenn 表示。“这进一步加强了我们与全球汽车制造商的合作,也是对 Marelli 多年来在开发不同架构的 BMS 方面积累的丰富经验的认可,这些 BMS 可以满足我们客户的特定需求,并与他们共同打造未来的汽车。” 获奖的电池管理系统将由 Marelli 位于意大利和日本的电力传动系统团队开发和测试。该系统计划于 2026 年开始生产,为汽车制造商的各个工厂供货。BMS 将基于分布式架构,需要的线束更少。该系统(简而言之,其作用是监控和控制电池)将所有与锂电池单元相关的硬件集成到电池模块控制器 (CMC) 上,该控制器直接放置在被监控的电池模块上。该解决方案减少了大量的布线,布线仅限于相邻 CMC 模块之间的几条传感器线和通信线。因此,每个 CMC 都更加独立,并根据需要处理测量和通信。电池管理系统的主要任务是管理电池的存储电量和容量,以便为车辆提供能量,同时检查和提供有关电池的信息
关键模块包括EV设计过程,监管标准和开发周期,强调实践技能和行业标准的工具。学生将深入了解动力总成配置,电池技术和燃料电池系统,同时学习管理安全性,设计验证和虚拟工程技术。特别关注不同的车辆类型,从两轮和三轮车到汽车,公共汽车和卡车。对于那些旨在提高其电动汽车工程专业知识并为可持续运输的未来做出贡献的人来说,这是理想的选择。
The conference will focus on key technologies relevant to digital engineering covering topics from – • AI / ML & Intelligent mobility • Digital Twin, Cybersecurity, Cloud, Vehicle Electronics & Software • Autonomous systems, Active Safety & Controls & ADAS • Design, Modeling, CAE & Virtual Simulations • Algorithms, Programming & Research • Crash, NVH, Strength & Durability CAE • Aerodynamics, Heat Transfer & CFD analysis •车辆动力学和MBD模拟•橡胶,塑料和复合材料CAE•动力总成,电气化和替代燃料
1 摘要 —本文的主要目的是对阻碍飞机走向电动动力系统的技术挑战进行有益的回顾。混合动力、全电动和涡轮电动动力系统架构被讨论为可能的燃油消耗和减重解决方案。在这些架构中,混合动力和全电动架构的短期实施受到限制,特别是对于大容量飞机,因为最先进的电能存储系统可实现的能量/功率密度水平较低。相反,具有先进分布式推进和边界层吸入的涡轮电动架构将引领走向电动动力系统的努力。在这一转变的核心,功率转换器和高功率密度电机,即电动机和发电机,以及它们相应的热管理系统被分析为实现电动动力系统的关键设备。此外,为了进一步提高飞机的燃油效率和功率密度,本文描述了实施更高电压动力系统的好处和挑战。最后,基于本文收集的研究结果,提出了更多电动飞机动力系统的预计路线图。本文说明了每种技术(即电池、电机和电源转换器)的单独目标,以及它们如何转化为未来的飞机原型。索引术语 — A
➢机械滥用测试 - 指甲穿透,掉落,压碎等。➢电气滥用测试 - 短路,过度充电,过度递减等。➢热滥用测试 - 热稳定性,过热,高温危险等。➢SAEJ2464,IEC62660,UL 2580,DO-160G,DO-311A,UN 38.3等。•浸入冷却 - 设计,开发和故障排除 - 传热液测试,滥用测试•细胞基准测试 - DCIR,DCIR,静态容量,HPPC,HPPC,曲柄能力,能源,能源效率,能量效率•循环/日历测试 - 竞争性充电轮廓和极端环境和极端环境,具有Taguchi L9方法•电压分析•EIS分析(EIS)分析(EIS)分析(EIS)分析(EIS)分析(EIS)分析(ETE) - 启动(EIS)分析(ET),启动(ET)。撕裂/验尸分析•电动汽车基准测试 - 仪器和热管理系统,电子轴线基准测试•GT-Autolion电池电池性能和退化模拟学生工程师2021年6月2021年6月至2021年8月,西南研究所电气化动力总成•开发了质量为lithium-ion电池组合的分析热传输模型,这些分析模型跨越了热量渐变,跨越了热量渐变,跨越了热量渐变。•进行了定制热管理系统的细胞和模块级实验以及数据分析。•设计,制造和验证专门的测试台,重点是浸水冷却以及21700 li-ion 7ps1砖的核心温度测量。
高压警告贴纸位于亚瑟(Arthur)的各个位置。那里有高压符号通知您,接触高压会导致冲击,烧伤,受伤甚至死亡。车辆上的高压组件应仅由经过特殊训练的FONZ Moto技术人员提供服务。高压电缆和布线具有橙色的绝缘材料。切勿探测,篡改或修改高压电缆或布线。如果您对车辆动力总成性能有任何疑问,请立即联系Fonz Moto Pty Limited客户服务。
Toughcase系列VCU的基本控制系统为安全至关重要的应用而开发,可让您充满信心地将项目栩栩如生,并以最少的额外组件为生。它在大型电压范围内运行,直接驱动高电流,并构建以在各种环境条件下运行。有64针和154针配置可用,能够处理监督和域控制应用,例如动力总成,变速箱,转向,底盘,稳定性以及热或身体控制。还可以使用可选的PLC通信渠道,可以利用软件中的控制控制逻辑。