CRISPR/Cas 系统,特别是 CRISPR/Cas9(Jinek 等人,2012;Cong 等人,2013),已被开发为一个强大而多功能的平台,用于操作各种物种的基因组。近年来,许多报告表明其在人类基因治疗和生命科学研究以及动植物育种方面具有强大的潜在应用。本研究主题“精准基因组编辑技术和应用”中的集合可能就是明证。通常,CRISPR/Cas9 核酸酶用于切割目标基因组 DNA 以产生位点特异性双链断裂 (DSB),主要通过非同源末端连接 (NHEJ) 修复,或在较小程度上通过同源定向修复 (HDR) 修复。经典的 NHEJ 修复途径可产生小的插入或缺失 (indel),通过在开放阅读框 (ORF) 中引入移码导致目标编码基因的功能丧失。NHEJ 诱变是一种非常流行的基因操作策略。除了经典的 NHEJ 之外,替代或准确的 NHEJ 介导的修复可以实现精确的基因组 DNA 缺失(Guo et al., 2018; Shou et al., 2018)。Chao 等人和 Zhao 等人在本研究主题中的两篇论文分别描述了等位基因特异性敲除和双基因敲除小鼠模型的制造,用于快速疾病基因验证和人类异种移植研究。N6-甲基腺苷 (m6A) 是一种成熟的真核 mRNA 表观遗传修饰。越来越多的研究发现了 m6A 甲基化的意义,这催生了“表观转录组学”这一新兴领域。本卷中的另一篇文章( Huang 等人)描述了小鼠精原细胞 GC-1 细胞中脂肪质量和肥胖相关( Fto )基因的敲除研究,该基因已被证明作为 m6A 去甲基化酶作用于表观转录组( Li 等人,2017 年; Lin 等人,2017 年)。另一方面,HDR 修复途径依赖于同源供体 DNA 在 DSB 位点产生靶向基因敲入或在两个 DSB 位点之间产生基因替换。精确的点突变和设计的小插入/缺失也可以通过这种方法实现。本专题中的一篇论文介绍了利用CRISPR/Cas9介导的HDR在人诱导性多能干细胞(iPSC)中精准校正Rett综合征(RTT)中甲基-CpG结合蛋白2(MECP2)基因的努力。该报道为基于iPSC的疾病建模和基因校正治疗提供了参考(Le等)。虽然基于HDR的基因组可以实现基因插入和精准替换,但在精准编辑过程中仍面临一些缺点,包括HDR效率低、双等位基因靶向失败、正向选择的复杂性以及选择标记的重新删除。
1 再生疗法中心(CRTD),德累斯顿工业大学,01307 德累斯顿,德国;giovanni.pasquini@tu-dresden.de(GP);Anka.Kempe@tu-dresden.de(AS) 2 神经解剖学和发育生物学研究所(INDB),埃伯哈德卡尔斯大学图宾根,72074 图宾根,德国;virginia.cora@uni-tuebingen.de(VC);Kevin.Achberger@uni-tuebingen.de(KA);lena.antkowiak@uni-tuebingen.de(LA);Stefan.liebau@uni-tuebingen.de(SL) 3 眼科系,尤斯图斯-李比希大学,35392 吉森,德国;brigitte.mueller@augen.med.uni-giessen.de(BM); tobias.wimmer@augen.med.uni-giessen.de(TW);Knut.Stieger@uniklinikum-giessen.de(KS)4 图宾根大学医学遗传学和应用基因组学研究所,72076 图宾根,德国;sabine.fraschka@med.uni-tuebingen.de(SA-KF);Nicolas.Casadei@med.uni-tuebingen.de(NC)5 图宾根 DFG NGS 能力中心,72076 图宾根,德国 6 图宾根大学眼科研究所眼科系,72076 图宾根,德国; marius.ue ffi ng@uni-tuebingen.de 7 Universitäts-Augenklinik Bonn,波恩大学,眼科系,53127 波恩,德国 * 通信地址:volker.busskamp@tu-dresden.de † 这些作者对这项工作做出了同等贡献。
图1。UMI-DSBSEQ定量单分子测序DSB和修复产品在番茄中的三个靶标。a)时间课的收集:叶肉细胞原生质体是从2-3周大的M82 Solanum Lycopersicum的幼苗中分离出来的。重复的样品在72小时内为72个时间点中的每一个中的每一个制备了200,000个原生质体。CRISPR RNP由PEG介导的转换引入。在提取RNP引入和DNA后,在0、6、12、24、36、48和72小时将样品冷冻。b)UMI-DSBSEQ目标设计:特定于目标序列的引物,与SGRNA目标序列两侧的限制酶位点结合,以创建完整分子(WT或Indel)的可用端,以连接适配器。c)UMI-DSB文库制备:从时间探索收集中提取DNA,其中包含WT(1),未经修复的DSB(2)和包含Indels(3)的完整分子,在体外受到限制,限制了确定目标切割位点的限制酶。通过填充和a添加的最终修复后,由P7 Illumina流量细胞序列和包含i7索引和9BP唯一分子标识符(UMIS)组成的Y形适配器(UMIS)与未经修复的DSB和受限端相连。通过连接介导的PCR进行的靶标特异性扩增,其中一个引物与适配器序列相同,并包含P7 Illumina Tail(橙色)和一个针对靶序列(蓝色)的引物(橙色),带有P5 Illumina Tail(红色)。这会导致SPCAS9切位点和底漆之间的DSB的单端扩增。红色X表示DSB的未捕获端。
摘要:单核苷酸变体约占人类已知的致病遗传变异的一半。基因组编辑策略通过逆转最小侧面效应的致病点突变具有巨大的治疗潜力,现在正在积极追求。基础编辑和主要编辑等精确和有效的基因组编辑策略的出现为核苷酸转化提供了强大的工具,而无需诱导双链DNA断裂(DSB),这表现出了固化遗传疾病的巨大潜力。基本编辑器的多种工具包已被开发,以提高应用程序不同背景下的编辑效率和准确性。在这里,我们总结了基本编辑者的发展(BES),他们的局限性和基于基础编辑的治疗策略的未来观点。
nfineon 的新型 DPS368 数字气压传感器非常适合恶劣环境下的可穿戴设备,因为与其他防水压力传感器相比,它节省了高达 80% 的空间,并且与压阻技术相比,精度可达 ±2 cm,功耗可节省高达 50%。由于垫子和膜片受凝胶保护(图 1),因此该传感器具有防水、防潮和防尘功能。它通过了 IPx8 认证,可以在 50 米深的水下停留一小时。DPS368 解决的其他具有挑战性的应用包括吸尘器、空调或抽油烟机中的气流监测,其中压力传感器必须在多尘和潮湿的环境中工作以检测故障或性能损失。同样受益于这些精确而坚固的压力传感器的医疗应用包括智能吸入装置、呼吸面罩或非侵入式血压测量。DPS368 的压力传感器元件采用电容式传感原理,可确保在温度变化时保持高精度。DPS368 基于成熟的 DPS310,但采用非常坚固且防水的封装。这种组合使 DPS368 成为恶劣环境下各种应用的理想选择。目标应用包括智能手表、可穿戴设备和智能手机(例如健身追踪、计步、跌倒检测、导航、高度检测);家用电器(例如 HVAC/吸尘器中的气流控制、洗衣机中的水位检测、入侵者检测);无人机(例如飞行稳定性、高度控制);电子烟(加热器控制);和医疗保健(例如跌倒检测、气流监测)。
由小型低成本 GPS 记录设备收集的 L1 相位测量是导航方法的基础,旨在独立于任何辅助系统精确测量(飞行)轨迹。在一个移动接收器在两个不同时间进行的两个测量之间形成单一差异,可以在长达几分钟的时间间隔内实现低分米范围内的相对精度。该方法不需要空间或地面增强系统、第二个附近的基站接收器或任何(静态)初始化模式。这一事实大大降低了用户在极端偏远地区经常在恶劣的现场条件下操作时需要处理的复杂性。该方法利用消除歧义的优势,而不是努力估计每个相位测量都有偏差的这些未知量。本文推导了本构导航方程,并讨论了限制可能处理间隔的各种误差源的理论方面。该方法通过静态和动态参考数据进行了验证。最后,介绍了在凯尔盖朗群岛使用时差法测量信天翁动态翱翔的 GPS 活动的初步结果,并使用时差法处理了示例数据。
抽象的微流体技术促进了对流体混合和组件之间相互作用的精确控制,包括自组装和降水。它为准确制造颗粒提供了新的选择,并具有推进微/纳米颗粒药物输送系统(DDSS)的重要潜力。已经探索了各种微通道/微流体芯片以构建微/纳米颗粒DDS。通过微流体技术对粒径,形态,结构,刚度,表面特征和弹性的精确操纵依赖于特定的微通道几何设计以及外源能量的应用,并依赖于流体运动的原理。因此,这可以对关键质量属性(CQA)(例如粒径和分布,封装,效率,药物负荷,体外和体内药物输送率,ZETA电位和靶向功能),用于微型/纳米型ddss。在这篇综述中,我们对微流体技术进行了分类,并探讨了过去5年(2018 - 2023年)的新型微通道结构的最新研究发展及其在微型/纳米型DDS中的应用。此外,我们阐明了微流体技术的最新操纵策略,这些技术影响了与微/纳米/纳米细胞DDSS CQA相关的基础结构。此外,我们还提供了有关新型微/纳米颗粒DDS的背景下微流体技术所面临的工业应用和挑战。
摘要:抗体作为宿主适应性免疫系统的重要组成部分之一,在防御传染病、免疫监视和自身免疫性疾病中发挥着重要作用。由于重组抗体技术的发展,抗体疗法成为最大规模和发展最快的药物,为患者带来巨大的健康益处,尤其是对癌症患者的治疗。目前已开发出许多基于抗体的治疗策略,包括单克隆抗体、抗体-药物偶联物、双特异性和三特异性抗体以及亲抗体,并在临床试验和临床前试验中取得了令人欣喜的结果。然而,由于机制不明,患者之间的反应率和副作用仍然有所不同。本文,我们总结了基于抗体的癌症免疫治疗策略的当前和未来前景,以设计下一代药物。
使用效率低下,不精确和亚细胞隔室化引起的现有方法,哺乳动物细胞中的鲁棒和精确的转录物靶向仍然是一个困难的挑战。在这里我们表明,群集的定期间隔短的短质体重复序列(CRISPR)-CSM Complex是原核生物中III III CRISPR免疫系统的多蛋白效应子,可提供核和细胞质转录物的手术RNA消融。作为最广泛发生的CRISPR自适应免疫途径的一部分,CRISPR-CSM使用可编程的RNA指导的机制来查找和降低靶标RNA分子,而无需诱导细胞RNA的不差异化跨性别分解,从而使其比CRISPR-Cas13家族的enzemes eNzemes的重要优势具有重要优势。使用嗜热链球菌CSM复合体的单载体递送,我们观察到高效率RNA敲低(90-99%)和人类细胞中最小的脱靶效应,超过了现有技术,包括短发蛋白RNA RNA和Cas13介导的敲击。我们还发现,催化灭活的CSM达到了特定且耐用的RNA结合,这是我们对活细胞RNA成像的特性。这些结果确立了多蛋白CRISPR-CAS效应络合物作为真核生物中RNA靶向工具的可行性和功效。
航空测绘实践的精确机载 GPS 定位替代方案 Mohamed M. R. MOSTAFA,加拿大 关键词:GPS、机载、摄影测量、测绘、地理配准、遥感 摘要 来自 GPS 测量的定位信息已成为当今许多航空测绘系统的可靠组成部分。但是,在使用 GPS 进行机载测绘时通常面临的后勤限制之一是需要 GPS 接收器在勘测区域的一个或多个基站收集连续数据(例如始终在飞机 30-50 公里范围内设立一个基站)。虽然使用此类数据是满足当今最苛刻的大规模航空勘测应用的精度要求的一种手段,但当勘测在偏远或难以到达的地形上进行时,建立基站通常是一项艰巨的任务。此外,即使建立了专用基站,由于环境影响、接收器错误或人为错误,数据的连续性也并不总是能得到保证。考虑到这些要点,本文的目的是评估在不建立专用 GPS 基站的情况下获得可靠和准确的测量飞机位置估计值的可能性。这里使用了三种方法。第一种方法是利用现有连续运行参考站 (CORS) 网络提供的数据来估计飞机的位置。虽然此类站点通常距离测量区域相当远(例如50 到 500 公里),但它们的数量通常很大,并且它们的数据通常是免费提供的。第二种方法是使用 IGS 产品,其中精确的轨道和卫星时钟校正是在事后获得的,并在单点定位模式下使用。第三种方法是使用实时可用的卫星差分校正。这项分析使用了美国和日本过去三年进行的实际测绘任务的大量真实数据集。初步测试结果和分析结果将进行介绍和详细讨论。这些方法的直接好处包括精确定位航空测量应用,例如 GPS 辅助空中三角测量,以及生成外部方向参数,用于航空胶片或数码相机、激光雷达和 SAR 的直接地理参考。