强化学习 (RL) 在实现机器人自主习得复杂操作技能方面前景广阔,但在现实环境中实现这一潜力却充满挑战。我们提出了一个基于视觉的人机协同强化学习系统,该系统在一系列灵巧操作任务中展现出令人印象深刻的性能,包括动态操作、精密装配和双臂协调。我们的方法融合了演示和人工校正、高效的强化学习算法以及其他系统级设计选择,旨在学习在短短 1 到 2.5 小时的训练时间内即可实现近乎完美的成功率和快速循环时间的策略。我们证明,我们的方法显著优于模仿学习基线和先前的强化学习方法,平均成功率提高了 2 倍,执行速度提高了 1.8 倍。通过大量的实验和分析,我们深入了解了该方法的有效性,展示了它如何为反应式和预测式控制策略学习稳健且自适应的策略。我们的结果表明,强化学习确实能够在实际训练时间内直接在现实世界中学习各种基于视觉的复杂操作策略。我们希望这项工作能够激发新一代学习型机器人操作技术,促进工业应用和研究进步。视频和代码可在我们的项目网站 https://hil-serl.github.io/ 获取。
我们与 Rocketmine 合作,开创了新的测绘解决方案。Rocketmine 是一家全球无人机数据服务提供商,为多个行业提供跨大洲的全套交钥匙无人机解决方案,包括采矿、农业、工程、可再生能源、安全和医疗等。这项任务是在加纳/西非赤道丛林环境中勘测 6,500 公顷的区域。这种极端的操作环境为我们的 Trinity F90+ VTOL 无人机解决方案与 Qube 240 LiDAR 有效载荷的组合提供了理想的试验平台。茂密的丛林环境对传统的摄影测量测量技术和 RGB 传感器来说是个问题,因为它们无法穿透地形的各个树层。作为 Quantum-Systems 无人机解决方案在该地区首次积极部署,Rocketmines 团队能够率先使用这项突破性技术并快速收集相关数据以完成任务目标。
本文设计的电路结构如图3所示。发送模块、接收模块、管理寄存器不是本文关注的重点,其设计与文献[9]类似。IEEE 1588时钟同步电路由发送标志模块、接收标志模块、收发报文处理模块、管理寄存器、中断控制和IEEE 1588时钟模块组成。发送标志模块可以检测IEEE 1588报文的发送,记录报文到达的时间并保存在发送标志寄存器中。发送报文处理模块对报文进行分析,如果报文正确,则产生中断,通知上层应用程序通过读管理寄存器获取时间戳。接收模块的功能与发送模块类似,为避免重复,本文不再赘述。
。CC-BY-NC-ND 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2022 年 4 月 27 日发布。;https://doi.org/10.1101/2022.04.27.489682 doi:bioRxiv 预印本
摘要:由于它们的非接触式和快速测量功能,激光干涉仪代表了表面验证仪的触觉手写笔仪器的有趣替代方法。除了这些出色的属性外,收购成本在行业中起着重要作用,限制了光学辅助仪的频繁使用,而光学仪比触觉修理仪昂贵得多。我们提出一个低成本激光测量干涉仪,其轴向重复性以低于1 nm的速度,以每秒38,000高的高度值。传感器的性能已在几个表面标准上进行了验证,可达到高达160 mm/s的横向扫描速度。进一步到高扫描速度,高采集率通过平均测量高度值来提高测量精度。例如,可以将625 pm的标准偏差用于重复测量值,以牺牲数据速率为代价。但是,传感器概念为进一步提高数据速率和测量可重复性提供了潜力。
1 John和Anne Chong Lab功能基因组学,查尔斯·珀金斯中心和生活与环境科学学院,悉尼大学,悉尼,悉尼,新南威尔士州,2006年,澳大利亚; Christopher.denes@sydney.edu.au(C.E.D.); geng.li@sydney.edu.au(G.L.)2百年学院,悉尼大学,悉尼,新南威尔士州,2006年,澳大利亚; a.cole@centenary.org.au 3悉尼大学医学与健康学院,悉尼,新南威尔士州,2006年,澳大利亚4悉尼医学院,悉尼大学,悉尼,悉尼,新南威尔士州,2006年,澳大利亚; yaks0757@uni.sydney.edu.au 5 5号生物医学科学系,医学与健康科学系,麦格理大学,澳大利亚悉尼,锡德尼,澳大利亚2113 ); d.hesselson@centenary.org.au(D.H.)†这些作者同样贡献。2百年学院,悉尼大学,悉尼,新南威尔士州,2006年,澳大利亚; a.cole@centenary.org.au 3悉尼大学医学与健康学院,悉尼,新南威尔士州,2006年,澳大利亚4悉尼医学院,悉尼大学,悉尼,悉尼,新南威尔士州,2006年,澳大利亚; yaks0757@uni.sydney.edu.au 5 5号生物医学科学系,医学与健康科学系,麦格理大学,澳大利亚悉尼,锡德尼,澳大利亚2113); d.hesselson@centenary.org.au(D.H.)†这些作者同样贡献。
作者的完整列表:瑞巴岛Yabushita; Tohoku University,Hiroki的高级材料多学科研究研究所; Tohoku University,Atsushi高级材料多学科研究研究所; Tohoku大学,Masafumi的高级材料多学科研究研究所; Tohoku University,Sachiko的高级材料Maki多学科研究所; Tohoku大学,Masaki的高级材料Matsubara多学科研究研究所; Tohoku大学,高级材料多学科研究研究所;仙台国家技术学院-Natori Campus Kanie,Kiyoshi; Tohoku University,Atsushi的高级材料多学科研究研究所; Tohoku大学,高级材料多学科研究研究所;日本科学技术局,进化科学技术核心研究
。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 4 日发布。;https://doi.org/10.1101/2024.12.03.626493 doi:bioRxiv 预印本
威胁处理的动物模型已经超越了杏仁核,以结合分布式神经网络。在人类研究中,近年来,证据加剧了挑战以杏仁核为中心的规范威胁回路,敦促修改威胁概念化。在过去十年中,对感官皮层中威胁处理的大量研究产生了特别有用的见解,以告知重新概念化。在这里,从动物和人类研究中综合发现,我们在感觉皮层中强调了敏感,特定和适应性的威胁表示,这是由于基于经验的感觉编码网络雕刻而引起的。因此,我们建议人类的感觉皮层可以推动“智能”(快速而精确的)威胁评估,从而产生威胁性的感官传入,以引起范围内的网络威胁响应。
1 Precise genomic deletions using paired prime editing 2 3 Junhong Choi 1,2*# , Wei Chen 1,3* , Chase C. Suiter 1,4 , Choli Lee 1 , Florence M. Chardon 1 , Wei Yang 1 , Anh 4 Leith 1 , Riza M. Daza 1 , Beth Martin 1 , and Jay Shendure 1,2,5,6# 5 6 1 Department of Genome Sciences, University美国西雅图,华盛顿州华盛顿州98195,美国7 2霍华德·休斯医学研究所,西雅图,西雅图,华盛顿州98195,美国8 3分子工程与科学研究所,华盛顿大学西雅图大学,华盛顿大学98195,美国9 4分子和细胞生物学计划98195,美国11 6 Allen Discovery Cell Lineage Tracing中心,华盛顿大学西雅图,华盛顿州98195,美国12 13 *这些作者同样贡献了14#对应关系:junhongc@uw.edu(J.C.)15 16 17摘要18 19精确地删除基因组序列的技术可用于研究20功能,并有可能用于基因治疗。针对编程的21删除的领先当代方法使用CRISPR/CAS9和成对的指南RNA(GRNA)产生附近的两个双链22间断,然后通常在DNA修复过程中删除中间序列。但是,23这种方法可能是效率低下和不精确的,其中包括两个目标站点24的小indels,以及意外的大删除和更复杂的重排。我们证明,与CRISPR/CAS9和GRNA Pairs相比,Prime-Del在编程缺失中的精度明显高28。44 45在这里,我们描述了一种基于Prime-Del的基于25个编辑的方法,该方法使用一对原始编辑的26个GRNA(PEGRNA)诱导删除,该方法靶向相反的DNA链,有效地编程了27个站点,还可以对其进行修复的结果进行编程。我们还表明,29个Prime-Del可用于将基因组删除与短插入相结合,从而使30个连接的缺失不落在原始的Adjacent-Adjacent基序(PAM)位点。最后,我们证明了延长31素数编辑组件的表达时间窗口可以大大提高效率32,而不会损害精度。我们预计,Prime-Del将在启用33个精确,灵活的基因组缺失编程(包括框内删除)以及epiTope 34标记以及可能用于编程重排的基因组删除方面非常有用。35 36简介37 38精确操纵基因组的能力可以严格地研究39个特定基因组序列的功能,包括基因和调节元件。在过去的十年中,基于CRISPR/CAS9的40个技术在这方面已被证明具有变革性,从而可以将41个基因组基因座的精确靶向,并迅速扩大了编辑或扰动方式的曲目1。在42中,特定基因组序列的精确和不受限制的缺失尤为重要,功能性基因组学和基因治疗中有43例关键用例。