● Clexio 开发了一种技术,可将精确剂量的药物输送到鼻腔的特定位置。该设备体积小、便于携带、使用简便,适合自行给药。该设备可以输送各种配方,并具有所需的喷雾羽流几何形状。● SPRACISE 的第一个原型被开发用于针对鼻腔中的蝶腭孔,以缓解丛集性头痛。目前正在进行 1b 期研究测试● 其他潜在用途:
使用效率低下,不精确和亚细胞隔室化引起的现有方法,哺乳动物细胞中的鲁棒和精确的转录物靶向仍然是一个困难的挑战。在这里我们表明,群集的定期间隔短的短质体重复序列(CRISPR)-CSM Complex是原核生物中III III CRISPR免疫系统的多蛋白效应子,可提供核和细胞质转录物的手术RNA消融。作为最广泛发生的CRISPR自适应免疫途径的一部分,CRISPR-CSM使用可编程的RNA指导的机制来查找和降低靶标RNA分子,而无需诱导细胞RNA的不差异化跨性别分解,从而使其比CRISPR-Cas13家族的enzemes eNzemes的重要优势具有重要优势。使用嗜热链球菌CSM复合体的单载体递送,我们观察到高效率RNA敲低(90-99%)和人类细胞中最小的脱靶效应,超过了现有技术,包括短发蛋白RNA RNA和Cas13介导的敲击。我们还发现,催化灭活的CSM达到了特定且耐用的RNA结合,这是我们对活细胞RNA成像的特性。这些结果确立了多蛋白CRISPR-CAS效应络合物作为真核生物中RNA靶向工具的可行性和功效。
* 其他层压板需要由 KLA 测试 ** 较大尺寸的短路可在聚合模式下成形 *** 基于带有 FR4 层压板的测试面板,包括 L/U **** 取决于缺陷数量和分布 ***** 取决于导体的尺寸、方向和厚度。Orbotech Precise Stick 消耗量可能存在很大差异。
无-4.2 4.1 1.04 EXO-NI 2.0 4.7 4.9 4.9 1.02 ENDO-NI 1.9 4.7 5.3 1.02 ENDO-ONI 1.2 4.7 5.8 5.8 1.02 ENDO-ONI * ENDO-ONI * 1.0 4.5 5.0 1.02 ENDO-PONI 〜0 4.9 4.9 6.4 1.08使用1 H NMR SpectRoscopy计算了计算。b根据单体和催化剂的进料进行计算,并假设每个步骤都完全转换。c由THF中的三重检测尺寸排除色谱(SEC)确定,用狭窄的PMMA标准校准。
摘要 许多发育过程依赖于基因表达的精确时间控制。我们之前已经建立了一个理论框架,用于控制如此高的时间精度的调控策略,但这些预测仍然缺乏实验验证。在这里,我们使用控制秀丽隐杆线虫神经母细胞迁移的 Wnt 受体的时间依赖性表达作为可处理系统,在体内研究强大的细胞内在计时机制。单分子 mRNA 定量显示受体的表达呈非线性增加,预计这种动态会提高计时精度,而不受控制的计时丰度呈线性增加。我们表明这种上调依赖于转录激活,为受体表达时间受累积激活剂调控的模型提供了体内证据,当达到特定阈值时,该激活剂会触发表达。这种计时机制在神经母细胞谱系中发生的细胞分裂中起作用,并受分裂不对称的影响。最后,我们表明通过经典 Wnt 通路对受体表达的正反馈可提高时间精度。我们得出结论,通过结合时间守护基因的调节和反馈,可以实现强大的细胞内在计时。
摘要:单核苷酸变异约占人类已知致病遗传变异的一半。通过逆转致病点突变且副作用最小的基因组编辑策略具有巨大的治疗潜力,目前正在被积极推行。碱基编辑和主要编辑等精准高效的基因组编辑策略的出现为核苷酸转换提供了强有力的工具,而不会诱导双链 DNA 断裂(DSB),这在治疗遗传疾病方面显示出巨大的潜力。人们开发了各种各样的碱基编辑器工具包,以提高不同应用环境中的编辑效率和准确性。本文,我们总结了碱基编辑器(BE)的发展、它们的局限性以及基于碱基编辑的治疗策略的未来前景。
摘要:单核苷酸变体约占人类已知的致病遗传变异的一半。基因组编辑策略通过逆转最小侧面效应的致病点突变具有巨大的治疗潜力,现在正在积极追求。基础编辑和主要编辑等精确和有效的基因组编辑策略的出现为核苷酸转化提供了强大的工具,而无需诱导双链DNA断裂(DSB),这表现出了固化遗传疾病的巨大潜力。基本编辑器的多种工具包已被开发,以提高应用程序不同背景下的编辑效率和准确性。在这里,我们总结了基本编辑者的发展(BES),他们的局限性和基于基础编辑的治疗策略的未来观点。
威胁处理的动物模型已经超越了杏仁核,以结合分布式神经网络。在人类研究中,近年来,证据加剧了挑战以杏仁核为中心的规范威胁回路,敦促修改威胁概念化。在过去十年中,对感官皮层中威胁处理的大量研究产生了特别有用的见解,以告知重新概念化。在这里,从动物和人类研究中综合发现,我们在感觉皮层中强调了敏感,特定和适应性的威胁表示,这是由于基于经验的感觉编码网络雕刻而引起的。因此,我们建议人类的感觉皮层可以推动“智能”(快速而精确的)威胁评估,从而产生威胁性的感官传入,以引起范围内的网络威胁响应。
定点 RNA 碱基编辑能够实现遗传信息的瞬时和可控改变,代表了一种操纵细胞过程的最新策略,为新型治疗方式铺平了道路。虽然已经对引入腺苷到肌苷变化的工具进行了深入研究,但对胞苷到尿苷编辑的精确和可编程工具的工程设计却有些落后。在这里,我们证明,从 RESCUE-S 工具中获取的 ADAR2 腺苷脱氨酶进化而来的胞苷脱氨酶结构域在将 RNA 靶向机制从基于 Cas13 更改为基于 SNAP 标签时提供了非常高效且高度可编程的编辑。向导 RNA 化学的优化进一步允许在难以编辑的 5'-CCN 序列环境中显着提高编辑产量,从而提高了该工具的底物范围。关于编辑效率,SNAP-CDAR-S 在所有测试目标上都明显胜过 RESCUE-S 工具,并且在扰乱 β-catenin 通路方面也非常出色。 NGS 分析表明,这两种工具都存在类似、适度的全局脱靶 A 到 I 和 C 到 U 编辑。
Andrew M. Clark 1 、Alexander Ingold 1 、Christopher F. Reiche 2 、Donald Cundy III 1 、4 Justin L. Balsor 1 、Frederick Federer 1 、Niall McAlinden 3 、Yunzhou Cheng 3 、John D. Rolston 4, 5 、Loren Rieth 5,6 、Martin D. Dawson 3 、Keith Mathieson 3 、Steve Blair 2†* 、6 和 Alessandra Angelucci 1†* 7