水监测,环境分析,细胞培养稳定性和生物医学应用需要精确控制。传统方法(例如pH条和米)具有局限性:pH条缺乏精度,而电化学仪表虽然更准确,但脆弱,容易漂移,不适合小体积。在本文中,我们提出了一种基于多重传感器的光学检测方法,该传感器具有通过两光子聚合制造的4D微腔。这种方法采用微孔子几何形状的pH触发变化,并整合了数百种双光学耦合的4D微腔,以达到0.003 pH单元的检测极限。所提出的解决方案是面向用例的高质量聚合结构的用用例使用的明确示例。由于多路复用成像平台的好处,双4D微孔子可以与其他微孔子类型集成以进行pH校正的生化研究。
与埃及象形文字一起,楔形文字是最古老的写作形式之一,由1000多个独特的角色组成。这些角色的外观可能会在任何时代,文化,地理甚至个人作家中变化,从而使它们难以解释。康奈尔大学和特拉维夫大学(TAU)的研究人员开发了一种名为ProtoSNAP的方法,该方法“捕捉”了一个角色的原型,以适合印在平板电脑上的单个变体。
本文介绍了一种进行全球本地化的新型船上方法,其中许多已经成功地证明了毅力。我们的概括技术使用修改后的人口普查转换,以实现稳健和实用的子米全球本地化精度,其性能与人为指导的本地化相匹配,从前两年半的任务中,平均不到0.5米以内,没有异常值。我们使用安装在毅力漫游器中的Ingenuity直升机基站上的快速处理器来执行本地化。它最初是为了与创造力进行协调交流。这项工作开发了界面和缓解辐射方法,使其可以用作Rover的协调员。该系统旨在限制操作的影响,并且不需要每日投入到Rover操作员,而不是是否执行全局本地化,但如果需要,也允许战略配置选项。我们讨论了从开发和部署这项新技术在飞行任务中所汲取的经验教训,并描述全球本地化如何增加科学回报并改变行星移动机器人的导航方式。
串联重复是基因组的频繁结构变化,并且在遗传疾病和CER中起重要作用。然而,解释串联重复的表型后果仍然具有挑战性,部分原因是缺乏建模这种变化的遗传工具。在这里,我们通过Prime Editing(TD-PE)制定了一种策略重复,以在哺乳动物基因组中创建有针对性,可编程和精确的串联重复。在此策略中,我们针对每个有针对性的串联复制设计了一对trans Prime编辑指南RNA(PEGRNA),该重复编码相同的编辑,但在相反的方向上介绍了单链DNA(SSDNA)扩展。每个扩展的逆转录酶(RT)模板设计与其他单个指南RNA(SGRNA)的目标区域同源,以促进编辑的DNA链的重新进行重复,并在中间的片段重复。我们表明,TD-PE产生了从约50 bp到约10 kb的基因组片段的鲁棒和精确的原位串联重复,最大效率高达28.33%。通过微调pegrnas,我们同时实现了目标重复和碎片插入。最后,我们成功地产生了多种疾病的串联重复,显示了TD-PE在遗传研究中的一般效用。
定点 RNA 碱基编辑能够实现遗传信息的瞬时和可控改变,代表了一种操纵细胞过程的最新策略,为新型治疗方式铺平了道路。虽然已经对引入腺苷到肌苷变化的工具进行了深入研究,但对胞苷到尿苷编辑的精确和可编程工具的工程设计却有些落后。在这里,我们证明,从 RESCUE-S 工具中获取的 ADAR2 腺苷脱氨酶进化而来的胞苷脱氨酶结构域在将 RNA 靶向机制从基于 Cas13 更改为基于 SNAP 标签时提供了非常高效且高度可编程的编辑。向导 RNA 化学的优化进一步允许在难以编辑的 5'-CCN 序列环境中显着提高编辑产量,从而提高了该工具的底物范围。关于编辑效率,SNAP-CDAR-S 在所有测试目标上都明显胜过 RESCUE-S 工具,并且在扰乱 β-catenin 通路方面也非常出色。 NGS 分析表明,这两种工具都存在类似、适度的全局脱靶 A 到 I 和 C 到 U 编辑。
收稿日期:2003 年 11 月 28 日 / 接受日期:2003 年 12 月 12 日 / 发表日期:2003 年 12 月 18 日 摘要:本文介绍了我们实验室设计和实现的高精度磁通门磁传感器及其在军事和空间系统中的应用。在军事应用中,传感器用于地面未爆炸弹药定位系统,其中将介绍两个不同的项目。该传感器还用于实现捷克新科学卫星 MIMOSA 的精确磁通门磁强计。关键词:磁通门传感器、磁通门磁强计、军事系统、空间系统 ________________________________________________________________________________ 1.简介 虽然磁通门传感器不是最灵敏的磁传感器,但它们仍然是高灵敏度和高精度磁测量应用中最流行的传感器,例如地球磁场和行星际场的研究以及军事应用 [1]。它们之所以受欢迎,是因为它们具有高线性度、在相对较宽的温度范围内具有良好的稳定性,并且具有良好的抗交叉场效应和抗高磁场冲击能力 [2]。近几年来,AMR 和 GMR 磁传感器的灵敏度已达到与磁通门传感器相当的水平 [3],但它们的温度和长期不稳定性使它们仅适用于性能较低的应用 [4]。磁通门传感器大多在反馈配置下运行,因此它们的动态范围可以轻松达到 130 dB,线性误差小于 10 ppm。由此可以看出,传感器接口的正确设计和实际实现也非常重要。
与基于质粒的 Cas9 系统相比,完整 RNA 格式的有效载荷更小,可更好地递送到细胞中并提高基因组编辑效率。此外,Cas9 mRNA 可用于具有多个 gRNA 的多重方法。使用此方法可确定哪种 gRNA 序列最适合特定靶标,或通过一次转染编辑多个基因组位点。使用 GeneArt Precision gRNA 合成试剂盒或 GeneArt CRISPR Strings 来制作靶标特异性 gRNA。
参与合成致死作用的DDR信号通路已被研究。然而,虽然DDR基因在RCC进展中的作用探索取得了成果,但它们之间的关联尚未得到系统的总结。聚(ADP-核糖)聚合酶(PARP)1抑制剂用于治疗BRCA1/2 DNA修复相关突变的肿瘤。PARP家族酶发挥翻译后修饰功能,参与DDR和细胞死亡。PARP、毛细血管扩张性共济失调突变基因和聚合酶θ的抑制剂在特定RCC亚型的治疗中起关键作用。PARP1可作为预测免疫检查点抑制剂治疗效果和评估多溴1突变ccRCC患者预后的重要生物学标志物。因此,DDR通路在RCC进展或治疗中的作用可能对某些特定类型RCC的治疗具有希望。
基因编辑工具,例如锌指、TALEN 和 CRISPR-Cas,为整个生命之树的植物遗传改良开辟了新领域。在真核生物中,基因组编辑主要通过两种 DNA 修复途径进行:非同源末端连接 (NHEJ) 和同源重组 (HR)。NHEJ 是高等植物的主要机制,但它不可预测,并且经常导致不良突变、移码插入和缺失。通过 HR 进行的同源定向修复 (HDR) 通常是遗传工程师首选的编辑方法。HR 介导的基因编辑可以通过整合供体模板提供的序列来实现无错误编辑。然而,植物中天然 HR 的频率低是实现高效植物基因组工程的障碍。本综述总结了为增加植物细胞中 HDR 频率而实施的各种策略。这些策略包括针对双链 DNA 断裂的方法、优化供体序列、改变植物 DNA 修复机制以及影响植物 HR 频率的环境因素。通过使用和进一步完善这些方法,基于 HR 的基因编辑可能有一天会在植物中变得很常见,就像在其他系统中一样。
尽管 CRISPR-Cas9 是基因治疗发展的关键,但其潜在的脱靶突变仍然是一个主要问题。在这里,我们建立了一种“间隔缺口”基因校正方法,将 Cas9 D10A 切口酶与一对相距 200 到 350 bp 的 PAM-out sgRNA 相结合。结合腺相关病毒 (AAV) 血清型 6 模板递送,我们的方法可在人类造血干细胞和祖细胞(HSPC 包括长期 HSC)和 T 细胞中实现有效的 HDR,同时将 NHEJ 介导的靶突变降至最低。利用间隔缺口,我们开发了一种修复 HBB 、 ELANE 、 IL7R 和 PRF1 基因中发生的致病突变的方法。我们实现了 20% 到 50% 的基因校正效率,同时将 NHEJ 介导的靶突变降至最低。根据深入的脱靶评估,经典 CRISPR-Cas9 诱导的频繁非预期遗传改变在用间隔缺口处理的 HSPC 中显著减少或消失。因此,间隔缺口基因校正方法为基因治疗提供了更高的安全性和适用性。