在农业应用中,采用纳米颗粒作为载体基质来生产混合功能材料具有未来性。在这项研究中,采用更环保的改进型原位溶胶-凝胶法合成尿素-二氧化硅纳米杂化物,尿素负载高达 36% (w/w),负载效率约为 83%。表征研究表明,尿素成功掺入二氧化硅纳米颗粒中,纳米颗粒和尿素分子之间形成强键,而二氧化硅纳米颗粒的结构和形态没有任何实质性改变。纳米杂化物在水中表现出十多天的缓慢和持续释放行为,进一步证实了上述观察结果。开发的尿素-二氧化硅纳米杂化物可用作缓释氮肥的潜在候选材料。2020 Elsevier BV 保留所有权利。
免疫检查点抑制剂通过作用于T细胞上的抑制性受体来恢复其抗肿瘤能力,在治疗多种癌症方面表现出显著的疗效。然而,由于肿瘤异质性等诸多尚未发现的原因,程序性死亡受体1和程序性死亡配体1(PD-1/PD-L1)阻断剂的客观缓解率仅为20%~30%,在实体瘤中的缓解率较低,且出现不同程度的副作用。影响PD-1/PD-L1阻断剂疗效的未知因素仍较多,准确筛选对治疗有缓解的肿瘤患者,提高缓解率和疗效是肿瘤精准治疗的巨大挑战。本文试图总结PD-1/PD-L1阻断剂疗效预测和联合应用的最新进展,并简要讨论与PD-1/PD-L1阻断剂联合用于改善精准免疫治疗实施的方法和评价。
并不总是在编辑的大部分细胞中存在的不同类型的基因编辑中提供精确的相关比例。我们已经开发了CRISPR-Analytics,CRISPR-A,它是一种全面且通用的基因组编辑Web应用程序工具和NextFlow Pipeline,可为基因编辑实验设计和分析提供支持。CRISPR-A提供了由数据分析工具和仿真组成的强大基因编辑分析管道。它的准确性比Curlant工具更高,并扩展了功能。分析包括基于模拟的噪声校正,升高的校准放大偏置降低和高级交互式图形。这种扩展的鲁棒性使该工具非常适合分析高度敏感的病例,例如临床样本或较低编辑效率的实验。它还通过模拟基因编辑结果来评估实验设计。因此,CRISPR-A是支持多种实验的理想选择,例如双链DNA断裂工程,基础编辑(BE),引物编辑(PE)和同源性修复(HDR),而无需指定使用的实验方法。
本文重点研究了无风传感器的四旋翼飞行器的控制,这些飞行器需要在存在中等但未知的阵风的情况下准确跟踪低速轨迹。通过将风扰动建模为外源输入,并假设可以通过准静态飞行器运动补偿其影响,本文提出了一种创新的估计和控制方案,该方案包括一个线性动态滤波器,用于估计此类未知输入,并且只需要位置和姿态信息。该滤波器建立在未知输入观察器理论的结果之上,允许在不测量风本身的情况下估计风和飞行器状态。可以使用简单的反馈控制律来补偿由扰动引起的偏移位置误差。只要有相应的应用转子速度,所提出的滤波器就与用于消除跟踪误差的恢复控制方案无关。首先使用机器人操作系统中间件和 Gazebo 模拟器在模拟环境中检查该解决方案,然后使用四旋翼飞行器系统在真实风源下飞行进行实验验证。
亲爱的编辑部 芹菜 ( Apium graveolens L.) 是伞形科的一种具有重要经济价值的叶菜作物,在世界各地广泛种植 [1]。生产上需要通过传统或现代分子遗传改良手段对芹菜进行品质、抗病虫害和晚抽薹等改良。常规育种遗传改良受限于育种周期长、随机性,因此基因工程育种的必要性凸显。精准的基因组编辑技术有可能突破常规育种的局限性。另外,芹菜功能基因组学的研究也对基因组编辑技术的发展提出了更高的要求。相对于其他主要作物,遗传转化体系不成熟和基因编辑技术不够发达已成为芹菜基础研究和遗传改良的瓶颈。 CRISPR/Cas9 系统是一种 RNA 引导的基因组编辑工具,由 Cas9 核酸酶和单向导 RNA(sgRNA)组成,可实现高效的靶向修饰[2,3]。由于其高效性和准确性,CRISPR/Cas9 诱导的基因组编辑已广泛应用于多种植物物种,以改善植物抗性和产量,并研究基因在控制农艺性状中的作用[2-4]。本文首次报道成功建立基于 CRISPR/Cas9 的基因组编辑系统,并通过在芹菜品种‘晋南诗芹’中靶向敲除八氢番茄红素去饱和酶基因(AgPDS)来验证该系统的有效性。 PDS 是类胡萝卜素生物合成中的一种限速酶,它催化无色八氢番茄红素转化为ζ-胡萝卜素,ζ-胡萝卜素进一步转化为番茄红素。它通常用作视觉标记来检测
摘要 使用当前可用的工具进行基因编辑表征并不总是能给出编辑大量细胞中存在的不同类型基因编辑之间的精确相对比例。我们开发了 CRISPR-Analytics,即 CRISPR-A,它是一种全面而多功能的基因组编辑 Web 应用工具和 nextflow 流程,用于支持基因编辑实验设计和分析。CRISPR-A 提供了一个由数据分析工具和模拟组成的强大的基因编辑分析流程。它比当前工具实现了更高的精度并扩展了功能。分析包括基于模拟的噪声校正、spike-in 校准扩增偏差减少和高级交互式图形。这种扩展的稳健性使该工具成为分析高度敏感的案例(例如临床样本或编辑效率低的实验)的理想选择。它还通过模拟基因编辑结果提供对实验设计的评估。因此,CRISPR-A 非常适合支持多种实验,例如基于双链 DNA 断裂的工程、碱基编辑 (BE)、引物编辑 (PE) 和同源定向修复 (HDR),而无需指定使用的实验方法。
自1996年第一个站点定向的核酸酶(SDN)和锌指核酸酶(ZFN)的发展以来,基因组编辑场发生了迅速变化(Kim等,1996)。自此以来,已经开发了许多工具,可以实现遗传序列的目标变化,最广泛使用的是CRISPR/CAS9(Jinek等,2012)。SDN允许研究人员轻松地靶向基因组中的序列,并在包括植物在内的各种生物体中以非常特定的方式引入变化(Feng等,2013)。SDNS的使用导致自引入以来的短时间内在植物中产生了各种各样的新表型。早期基因组编辑的重点主要是在基因敲除上,这很容易通过靶向核酸酶实现。SDNS形成双链断裂(DSB),由主机的本机维修机械修复。这通常会导致返回原始基因组序列,或插入或删除
核糖核蛋白(RNP)复合物介导的碱基编辑预计将非常有益,因为与质粒或病毒载体介导的基因编辑相比,其具有脱靶效应,尤其是在治疗应用中。但是,在细菌系统中产生丰富的产量和高纯度的重组胞嘧啶基础编辑器(CBE)或腺嘌呤碱基编辑器(ABES)的生产具有挑战性。在这里,我们从人类细胞表达系统中获得了高度纯化的CBE/ABE蛋白,并且表明CBE/ABE RNP表现出不同的编辑模式(即,与质粒编码的CBE/ABE相比,CBE/ABE的转化率较小(即,多个碱基与单个碱基的转化率较小),主要是导致细胞中RNP的寿命有限的原因。此外,我们发现与质粒编码的ABE相比,ABE RNP的DNA和RNA的脱靶效应大大降低。我们最终将NG PAM – tarbetable -abe RNP应用于视网膜变性12(RD12)模型小鼠中的体内基因校正。
摘要在非分裂细胞(如神经元)中,大型DNA片段对标记内源性蛋白的有效敲入仍然尤其具有挑战性。,我们以T WO(TKIT)指南为基于CRISPR/CAS9的新方法开发了T ARGE,以高效且精确的基因组敲入。通过靶向非编码区域TKIT对indel突变具有抗性。我们证明了具有各种标签的内源性突触蛋白的TKIT标记,在小鼠原发性培养的神经元中的效率高达42%。在小鼠中利用子宫电穿孔或病毒注射,可以将AMPAR亚基标记为超超金霉素,从而可以使用两光子显微镜在体内可视化内源性AMPARS。我们进一步使用TKIT来评估内源性AMPAR的迁移率,并在光漂白后荧光回收率。最后,我们表明TKIT可用于标记大鼠神经元中的AMPAR,在另一种模型生物体中证明了精确的基因组编辑,并突出了TKIT作为可视化内源性蛋白质的方法的广泛潜力。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2020年11月30日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2020.11.11.30.402883 doi:Biorxiv Preprint