重新混合或改编本材料用于任何目的,无需注明原作者。预印本(未经同行评审认证)在公共领域。它不再受版权限制。任何人都可以合法共享、重复使用,版权所有者已将此版本发布于 2020 年 4 月 14 日。;https://doi.org/10.1101/2020.04.13.039297 doi:bioRxiv 预印本
真菌鉴定是真菌研究的基础,但传统的分子方法难以在现场快速准确地鉴定,特别是对于近缘物种。为了解决这一挑战,我们引入了一种通用的鉴定方法,称为全基因组分析(AGE)。AGE 包括两个关键步骤:生物信息学分析和实验实践。生物信息学分析在真菌物种基因组内筛选候选靶标序列,称为 Targets,并通过将它们与其他物种的基因组进行比较来确定特定 Targets。然后,使用测序或非测序技术的实验实践将验证生物信息学分析的结果。因此,AGE 为子囊菌门和担子菌门中的 13 个真菌物种中的每一个获得了超过 1,000,000 个合格 Targets。接下来,测序和基因组编辑系统验证了特定 Targets 的超特异性性能;尤其值得注意的是首次展示了来自未注释基因组区域序列的鉴定潜力。此外,通过结合快速等温扩增和硫代磷酸酯修饰引物以及无需仪器的可视化荧光方法,AGE 可以在 30 分钟内通过单管测试实现定性物种鉴定。更重要的是,AGE 在识别近缘物种和区分中药及其掺假物方面具有巨大潜力,尤其是在精确检测污染物方面。总之,AGE 为基于全基因组的真菌物种鉴定的发展打开了大门,同时也为其在植物和动物界的应用提供了指导。
在过去十年中,空中机器人已成为帮助人类解决广泛的时间敏感问题的重要平台,2020)。在不同类型的空中机器人中,四型二次运动因其在设计,低成本,较小,尺寸小,轻巧和出色的机动性方面的简单性而对在不确定和混乱的室内环境中的应用引起了兴趣(Emran&Najjaran,2018年)。这些对时间敏感的任务通常需要四肢制定快速决策和敏捷的操作。因此,为了安全地控制这些系统,至关重要的是要准确地对其动力学进行建模和估算,并捕获空气动力和扭矩,螺旋桨相互作用,振动,模型近似和其他现象产生的高度非线性效应。但是,这种效果不能轻易测量或建模,因此通常保持隐藏状态(Saviolo,Li,&Loianno,2022)。此外,在某些空中机器人应用中,该平台可能会赋予外部范围(例如有效负载,操纵器,电缆),这些件将通过改变系统配置(例如质量和惯性矩)来大大改变动态。总体而言,未能建模这种系统配置更改将导致飞行性能的显着降解,并可能导致灾难性故障。为了避免此问题,最近的工作已经调查了使用基于物理学的原理方法进行四型动力学的经典建模,从而导致非线性普通微分方程(ODE)(Loianno,Brunner,McGrath和Kumar,2017年)。但是,这些名义模型仅近似实际的系统动力学,并且不考虑由系统配置的积极操作或修改引起的外部效果。
经颅超声刺激(TUS)已成为一种无创神经调节的有前途的技术,但是当前系统缺乏有效靶向深脑结构的精确性。在这里,我们引入了一个先进的TUS系统,该系统在深脑神经调节中实现了前所未有的精度。该系统具有256个元素,头盔形的换能器阵列在555 kHz下运行,并与立体定位系统,个性化的治疗计划以及使用功能性MRI进行实时监控。在一系列实验中,我们证明了系统在视觉皮层中选择性调节侧向元素核(LGN)及其功能连接区域的活性的能力。参与者在同时进行的TU和视觉刺激期间表现出显着增加的视觉皮层活性,并且在各个个体之间具有很高的可重复性。此外,theta-burst Tus方案诱导了鲁棒的神经调节作用,刺激后至少40分钟观察到视觉皮层活性降低。通过对照实验证实,这些神经调节作用是针对靶向LGN的特异性的。我们的发现突出了这种先进的TUS系统对以高精度和特异性调节深脑回路的潜力,为研究脑功能和开发针对神经系统和精神疾病的靶向疗法提供了新的途径。前所未有的空间分辨率和延长的神经调节作用证明了该技术在研究和临床应用中的变革潜力,为非侵入性深层大脑神经调节的新时代铺平了道路。
我最深的gra6tude去了Toyah,在我们在一起的整个旅程中,您坚定不移的支持,支持和宝贵的帮助,我深表感谢。在过去的几年中,您一直是我一生中的支柱,而您的无与伦比的爱,posi6vity和气泡的个性在我的生活和本文项目中一直是基础。感谢您一直在我身边,通过所有的跌宕起伏,即使我怀疑自己,也相信我。我感谢我们在一起探索世界时创造的许多回忆。从我们在瑞典的随机旅行到Croa6a的出色现场音乐棒,从乌云密布的都柏林到Bra6slava的城堡,从肯尼亚的Safaris到Pi6gliano的街头散步,每一刻都是一个珍贵的冒险。感谢您总是有故事要分享,并且永远不会用尽任何事情来谈论。您的存在是Inspira6on和力量的持续来源。Asante Sana。Asante Sana。
Wenxin Zhang,1,2,8,10 Rui Wang,1,2,10 Dali Kong,1,2,10 Fangnan Peng,1,2,10 Mei Chen,1,10 Wenjie Zeng,1,2 Francesca Gioume,3 Sheng He,3 Sheng He,1 Hui Zhang,4 Zhang,4 Zhen Zhen Wang,1 khen wang,1,9 khe,khen khian khian khian khian stunk khe k ky khe,khe,khe ky,ky, 1,6,7 Fabio Fornara,3和Daisuke Miki 1,11, * 1上海植物压力生物学中心,CAS CAS CAS卓越分子植物科学中心,中国科学院,上海200032,中国2,中国科学院,中国科学院,中国,中国33中,中国科学院33.上海师范大学,上海,200234年,生命科学,中国5研究生科学研究生院,米雅基仙台,米雅基980-8577,日本6 6高级生物技术学院和生命科学学院,科学技术大学科学与技术大学,科学与技术大学,科学技术大学,中国518055中心,高级生物学。北京100081,中国8现在的地址:高级跨学科研究学院,北京北京大学北京大学北京大学生命科学中心,中国北京100871,中国9目前的地址:当前的地址:阿纳伊州农业大学,阿纳伊州农业大学,HEFEI 230036,HEFEI 230036,HEFEI 230036,HEFEIS NEE SUPER ESHORIAN ES EMALINE 11次贡献了11次主持人。 https://doi.org/10.1016/j.crmeth.2022.100389Wenxin Zhang,1,2,8,10 Rui Wang,1,2,10 Dali Kong,1,2,10 Fangnan Peng,1,2,10 Mei Chen,1,10 Wenjie Zeng,1,2 Francesca Gioume,3 Sheng He,3 Sheng He,1 Hui Zhang,4 Zhang,4 Zhen Zhen Wang,1 khen wang,1,9 khe,khen khian khian khian khian stunk khe k ky khe,khe,khe ky,ky, 1,6,7 Fabio Fornara,3和Daisuke Miki 1,11, * 1上海植物压力生物学中心,CAS CAS CAS卓越分子植物科学中心,中国科学院,上海200032,中国2,中国科学院,中国科学院,中国,中国33中,中国科学院33.上海师范大学,上海,200234年,生命科学,中国5研究生科学研究生院,米雅基仙台,米雅基980-8577,日本6 6高级生物技术学院和生命科学学院,科学技术大学科学与技术大学,科学与技术大学,科学技术大学,中国518055中心,高级生物学。北京100081,中国8现在的地址:高级跨学科研究学院,北京北京大学北京大学北京大学生命科学中心,中国北京100871,中国9目前的地址:当前的地址:阿纳伊州农业大学,阿纳伊州农业大学,HEFEI 230036,HEFEI 230036,HEFEI 230036,HEFEIS NEE SUPER ESHORIAN ES EMALINE 11次贡献了11次主持人。 https://doi.org/10.1016/j.crmeth.2022.100389
图 2 蒙古沙鼠梯形体 (TB) 髓鞘的高分辨率图像。抗神经丝相关抗原 (3A10) (a – c) 和神经丝重链 (NFH) (d – f) 的抗体用作轴突标记物。抗髓鞘碱性蛋白 (MBP) 的抗体显示髓鞘。在出生后第 6 天 (a、a')、出生后第 9 天 (b、b 0 ) 和出生后第 13 天 (c、c 0 ) 从 TB 区域沙鼠大脑冠状振动切片中获取共聚焦单光学图像。在出生后第 7 天 (d、d 0 )、出生后第 10 天 (e、e') 和出生后第 14 天 (f、f 0 ) 从 TB 区域沙鼠大脑矢状振动切片中获取共聚焦单光学切片。 (a – f) 轴突标记物 3A10 (a – c) 和 NFH (d – f) 以红色显示,MBP 免疫反应性以绿色表示。(a' – f 0) 相应的 MBP 染色图像。出生后第 6 天 (a、a') 可以看到短的、有时是点状的髓鞘碎片,其间散布着较长的无髓鞘间隙。少突胶质细胞 (白色星号) 积极产生 MBP,用抗 MBP 抗体标记。在出生后第 7 天的矢状切面中,可以看到 TB 纤维的横截面。一小部分 TB 轴突被 MBP 包围,用抗 MBP 抗体标记。出生后第 9 天 (b、b 0),TB 中的大部分轴突都是髓鞘化的。然而,人们可以很容易地注意到一些轴突没有被髓鞘包裹 (白色箭头,b)。在出生后第 10 天的矢状切面上,大多数轴突被髓鞘包裹,但有些没有(白色箭头,e)。到出生后第 13 天(c,c 0)可以看到髓鞘包裹所有轴突。请注意,髓鞘轴突排列非常紧密,以至于很难勾勒出属于单个轴突的髓鞘。在出生后第 14 天的矢状切面上,TB 区域的所有轴突横截面都被髓鞘包裹。比例尺:20 μ m。
图 3:Mb 中能量转导的分子途径。(a)Mb 的结构,不同坐标根据其 PEF 的大小以不同颜色表示。(b)His93 作为血红素和蛋白质骨架之间的连接器(蓝色原子)。标记了对引导血红素能量至关重要的五个内部坐标。(c)仔细观察血红素面向 Mb 内部和外部的部分的 PEF 差异。(d)通过 !! , ! "(蓝色)和 # ! , # " , # #(红色)的 PEF。
摘要在精确导航方面的最新进展已广泛利用全球导航卫星系统(GNSS)和惯性导航系统(INS)的集成,尤其是在智能车辆的领域。然而,这种导航系统的功效被非光(NLOS)信号的反射和多径中断所损害。基于积极的感知传感器以其精确的3D测量而闻名的基于主动感知的传感器的光检测和范围(LIDAR)的探测器在增强导航系统方面已经变得越来越普遍。尽管如此,与GNSS/INS系统的激光雷达进气量同化列出了重大挑战。应对这些挑战,这项研究引入了两相传感器融合(TPSF)方法,该方法通过双阶段传感器融合过程协同结合了GNSS定位,激光镜和IMU预融合。初始阶段采用扩展的Kalman滤波器(EKF)与IMU机械化合并GNSS解决方案,从而促进了IMU偏见和系统初始化的估计。随后,第二阶段将扫描到映射激光雷达的进程与IMU机械化相结合,以支持连续的LiDAR因子估计。然后将因子图优化(FGO)用于liDar因子,IMU预融合和GNSS解决方案的全面融合。通过对城市化开源数据集的苛刻轨迹进行严格的测试来证实所提出的方法的功效,与最先进的算法相比,该系统表明性能的增强,可实现1.269米的翻译标准偏差(STD)。
CRISPR/CAS介导的基因组编辑技术已被广泛应用于通过在各种植物物种中产生短插入或缺失(Indel)来创建基因的基因淘汰等位基因。由于同源指导修复(HDR)的低效率和HDR DNA模板的差异,精确的基因组编辑在植物中仍然具有挑战性(Mao等,2019)。最近开发了一种串联重复HDR方法,用于替换水稻的序列,这对单子叶植物最有用(Lu等,2020)。基础编辑器从Cas9 nickase融合与胞嘧啶和腺嘌呤脱氨酶相关的基础编辑器实现了目标的C-T或A-TO-G替换,但仅限于特定类型的碱基替代品和目标位点选择(Mao等人,2019年)。在哺乳动物细胞中开发了一种“搜索和替换”方法,也称为Prime编辑,该方法可以在目标位点上的用户定义的序列变化而无需DSB或DNA修复模板提供(Anzalone等,2019)。几个研究小组已经采用了这种方法用于单子叶植物,包括大米和小麦(Butt等,2020; Hua等,2020; Li等,2020; Lin等,2020; Tang等,2020; 2020; Xu等,2020)。由于尚不清楚的原因,尽管基础编辑在诸如大米之类的单子叶植物中非常有效,但其dicot中的效率在dicots中非常低(Kang等,2018; Mao等,2019)。尚不清楚是否可以将主要编辑用于番茄植物(例如番茄)。在这里,我们报告了通过密码子和发起人优化在番茄中成功采用的主要编辑者。