由 McGraw-Hili 出版,该公司是 McGraw-Hili Companies, Inc. 的一个业务部门,地址为纽约州纽约市美洲大道 1221 号,邮编 10020。版权所有 © 2003、2000、1998,McGraw-Hill Companies, Inc.。保留所有权利。未经 McGraw-Hill Companies, Inc. 事先书面同意,不得以任何形式或任何方式复制或分发本出版物的任何部分,或将其存储在数据库或检索系统中,包括但不限于在任何网络或其他电子存储或传输中,或为远程学习而广播。某些辅助设备(包括电子和印刷组件)可能不向美国以外的客户提供。
硝基固醇是一种微生物生物刺激剂,含有活性形式(1 x 10月CFU)的氮固定细菌群落,具有穿透植物叶子并产生菌落的能力。这些细菌通过不断,始终如一地以直接同化的形式从大气中提供氮刺激植物的生长,并产生植物(Auxins等)),可确保快速,剧烈和平衡的生长以及收获的定量和定性特征的令人印象深刻的改善,同时降低氮肥,这反复证明是一项长期的实验性研究,在不同的作物和多样化的土壤和多样性的土壤中。
摘要 . 建筑信息模型 (BIM) 是一种允许建筑项目各利益相关者之间更好地进行信息管理和沟通的方法,其知名度和使用率不断提高,为建筑行业打开了数字制造工具的大门,多年来,数字制造工具已应用于许多高生产率行业。与过去几十年来没有取得任何进展的传统建筑工艺不同,3D 打印 (3DP) 已被证明是一种适用于建筑、工程和施工 (AEC) 的有趣技术,具有重要的经济、环境和可施工性优势,例如减少建筑时间和浪费、大规模定制和复杂的建筑形状。因此,世界各地的大学和公司现在都在开发和应用 3DP 到建筑施工中。然而,随着 AEC 越来越多地采用新技术,出现了新的挑战,必须克服这些挑战才能保证建筑物的正确性能。因此,本文进行了文献综述,重点介绍了增材制造结构的建筑物理和舒适度方面的新发展。研究表明,目前的重点是保证可打印性、结构稳固性、安全性和耐用性,这意味着仍然需要满足一些关键要求,包括耐火性和足够的湿热和声学性能。
- 所以,在 Carbon 推出之前,00:00:08,240 3D 打印主要是原型行业,对吧?这包括硬件、软件材料,甚至零件,这是一个价值约 80 亿美元的市场。其中也包括牙科。牙科是这个行业的一部分。所以,这可能是传统 3D 打印中更商业化的部分。你知道,当我们弄清楚如何利用 3D 打印更快地制造真正的零件时,这就是进入价值 3000 亿美元的注塑制造领域的开始。所以,我认为,你知道,对我们来说,跨越鸿沟的是使用案例。如果你愿意的话,推动大批量制造的杀手级应用是什么?你知道,阿迪达斯,我不知道我当时是否提到过阿迪达斯,但你知道,阿迪达斯是我们的合作伙伴。你知道,我们一直在寻找一种方法,如果我们能够扩大消费者跑鞋的规模,你知道,世界将是我们的囊中之物,因为我们已经解决了许多问题。你知道,先进的材料、全球规模、制造,我们已经解决了这些问题,现在你可以去 adidas.com 购买 AlphaEdges 和 4D,还有很多很棒的跑鞋,已经有超过一百万双了。我们还有 Riddell 的内衬、橄榄球头盔、个性化头盔,超过 1,000 名 NFL D1 运动员,以及许多其他即将推出的运动。
未经出版商以书面形式允许,本出版物的任何部分都不得以任何形式或任何方式,包括影印,记录或任何信息存储和检索系统来复制或传输。有关如何寻求许可的详细信息,有关出版商的权限政策的更多信息以及我们与版权清除中心和版权许可机构等组织的安排,请访问我们的网站:www.elsevier.com/permissions。
3D打印的概念已经存在了数十年,其根源可以追溯到科幻小说和电影。这一切都始于Hideo Kodama博士,他开发了一种用于通过使用光敏树脂的逐层方法来创建三维对象的系统。尽管他的工作并没有立即导致商业产品,但它引发了我们今天所知道的3D打印技术的开发。查克·赫尔(Chuck Hull)于1984年申请了3D印刷的第一项专利,这是其历史上一个重要的里程碑。但是,通过逐层制造创建对象的想法可以追溯到更多。在1940年代和1950年代,默里·伦斯特(Murray Leinster)和雷蒙德·琼斯(Raymond F.1970年代,约翰内斯(Johannes f Gottwald)获得了液态金属记录器的专利,这是当今加性技术的先驱。Charles Hull于1984年发明的立体光刻学(SLA)发明,通过利用紫外线来固化光敏感的树脂层并从数字设计中创建固体结构,从而革新了3D打印。1980年代后期看到了由Scott Crump专利的融合沉积建模(FDM)的开发,后者使用融化的塑料逐层构建对象。这些创新为现代3D打印技术铺平了道路,这已成为当今制造事物的重要工具。从火箭零件和医疗工具到艺术和其他创意项目,3D打印为创新和创造力开辟了新的可能性。使您的项目变得更好?FFF打印机通过一次热喷嘴挤压热塑性胶粘剂,一次创建三维对象。今天,FFF是使用最广泛的3D打印技术之一 - 它很容易,可靠且超级可访问!另一个重大突破是选择性激光烧结(SLS),它使您可以使用激光使用激光将它们融合在一起的各种材料,例如塑料,金属和陶瓷。这为3D打印开辟了一个全新的可能性,包括为飞机和医疗植入物制作定制零件。在80年代,3D打印开始从仅仅是一种快速原型制作工具转变为一种全面的生产技术,该技术可以改变航空航天和医学等行业的游戏。90年代看到了更多的创新 - 立体光刻(SLA)具有更好的激光和树脂的重大提升,使其更快,更精确。同时,FFF也在变得更好,Stratasys领导了电荷并制造超可靠的打印机,可以打印各种热塑性材料。SLS也有所改进,让人们打印诸如粉末状金属之类的奇怪物品,这是航空航天和汽车等行业的全面改变游戏规则。然后是多喷式建模(MJM),它使用喷墨机制逐层打印光聚合物材料 - 它是快速,详细且完全很棒的。3D系统不断使用新的SLA机器和材料来推动界限,这使得3D打印更容易被医学,牙科和航空航天等行业访问。但这是事实:90年代也看到了消费者级别的3D打印的兴起 - 突然之间,不仅仅是专业人士!人们开始使用负担得起的打印机,这些打印机可以制造出各种很酷的东西。3D打印的历史开始于1999年开始形成,当时Wake Forest森林再生医学研究所的科学家设计并植入了第一个3D打印的人体器官,这是一种使用患者细胞的合成膀胱支架。生物打印中的这种突破展示了3D打印在产生复杂的组织和器官中的潜力。2000年代初期,计算机辅助制造过程取得了重大进步。融合细丝制造(FFF)技术得到了改进,在商业和个人使用方面变得更可靠和访问。热塑性和加热喷嘴的改进增强了可打印物品的质量和多样性。FFF技术专利有助于推进桌面3D打印,使公众更容易获得。2000年代中期见证了选择性激光烧结(SLS)技术的发展,在扩大其工业应用的同时提高了精度和速度。立体光刻(SLA)变体的出现导致更高的分辨率和更快的打印时间,使SLA成为高尾部原型和生产的关键工具。新的材料挤出技术可以使用各种材料,例如碳纤维增强的塑料,从而为苛刻的应用提供了增强的机械性能。引入多物质3D打印打印机允许同时处理多种材料,从而产生更复杂的零件。单个印刷作业中各种材料的融合增强了印刷品的功能和视觉吸引力。2010年代在3D打印中展现了前所未有的扩展,以技术突破,更广泛的可访问性和各个部门的应用。关键发展包括FFF技术的成熟,关键专利的到期,导致负担得起的台式机3D打印机以及具有选择性激光熔化(SLM)的金属3D打印的进步。在2010年代的十年中,3D打印方面取得了重大进步,其技术能够生产复杂的金属零件在航空航天和车辆制造中变得无价之宝。多物质印刷的兴起通过结合硬质和软塑料来创建更复杂和功能的部分。生物印刷也取得了巨大的进步,使研究人员能够打印人体组织和器官,从而在医学科学领域开辟了新的边界。3D打印中的创新导致了关键专利的提交,其中包括Stratasys的一项用于FFF中的可移动支持,该专利简化了后处理,另一种用于改进SLM技术。这些进步扩大了跨行业的3D印刷的应用,包括医学,航空航天,汽车,消费产品,教育和DIY项目。2020年代继续看到3D打印的显着增长,技术突破可以增强能力并将其整合到各个部门中。添加剂制造技术的进步具有提高的速度,效率和多功能性,可以使用高级材料(例如碳纤维和玻璃纤维)。在2020年代提交的新专利正在塑造3D打印的未来,包括与多物质印刷相关的印刷品。金属3D打印也有了很大的发展,精确度和与各种金属粉末一起工作的能力提高了,对需要复杂,轻量级部分的行业特别有影响力。对3D印刷中的可持续性的关注导致材料废物和能源消耗的减少,与全球在环保制造实践方面的努力保持一致。大型3D打印的出现已经开辟了建筑和建筑方面的新可能性,从而实现了使用此技术的建筑组件和整个结构的创建。软件和AI集成通过3D打印过程中的专利提高了3D打印机的精度,速度和可用性。3D印刷的未来有望随着市场研究的不断增长表明进一步发展。北美的市场统治地位,由于美国和加拿大等国家对高级增材制造技术的投资以及NASA等政府机构的研发投资,从2023年到2030年的复合年增长率为21.4%。FFF和SLS的技术进步已做出了重大贡献,尤其是由于DMLS/SLM技术预计将在高复合年增长率上生长,因为它们能够生产出高质量的金属组件进行快速原型制作。汽车行业一直是用于快速原型应用程序和快速制造定制产品的3D打印的关键采用者,而航空航天行业则使用3D打印机来制造轻量级组件。单击此处与我们聊天,并了解Rish3D如何帮助您做惊人的事情。医疗保健正在发展人造组织和肌肉,以及建筑,建筑,消费品和教育等部门将在采用3D打印技术方面具有显着增长。新兴趋势包括通过减少材料废物和优化能源使用来关注可持续性和环境考虑。AI和软件进步的集成增强了精度和功能,从而导致了更有效和可定制的生产过程。此外,材料科学的进步导致了新材料的开发,包括高级聚合物和复合材料,这将进一步扩大3D打印机的功能和应用。第一台商业3D打印机是由查克·赫尔(Chuck Hull)于1984年开发的。他还发明了立体光刻过程并创立了3D Systems Corporation。他的工作帮助开拓了3D印刷行业,将逐层制造的概念转变为有形且商业上可行的技术。最古老的3D打印技术是Chuck Hull于1984年发明的立体光刻(SLA)。此技术涉及用紫外线固化光敏树脂,以一层构建对象。SLA标志着增材制造技术的开始和现代3D打印的诞生。虽然3D打印取得了重大进展,但它并不比互联网更古老。互联网的基本思想可以追溯到1960年代,而3D打印始于1980年代初,以查克·赫尔(Chuck Hull)的立体光刻开始。因此,互联网早于3D打印大约二十年。在2008年,随着关键融合沉积建模(FDM)专利的到期,3D打印行业的关键发展发生。结果,桌面3D打印机变得负担得起,使对该技术的访问的访问大大使其民主化。重复项目,旨在创建自我复制的3D打印机,也获得了动力,进一步提高了普及度和可及性。另外,2008年看到了第一个使用3D打印技术打印的假肢。3D打印的概念可以追溯到1950年代,其中雷蒙德·琼斯(Raymond F.在1970年代,约翰内斯·戈特瓦尔德(Johannes f Gottwald)在《新科学家》(New Scientist)的常规专栏文章Ariadne中介绍了液态金属记录器的专利,大卫·E·H·琼斯(David E. H. Jones)在他的常规专栏文章中提出了3D印刷的概念。hideo kodama在1980年4月发明了两种用于制造三维塑料模型的添加剂方法,1980年4月,罗伯特·霍华德(Robert Howard通过分层技术创建三维对象的历史可以追溯到1980年代初。1984年7月2日,Bill Masters在美国为其计算机自动制造过程和系统申请了专利。随后是AlainLeMhauté,Olivier de Witte和Jean ClaudeAndré,于1984年7月16日提交了其专利申请,用于立体光刻过程。但是,直到1986年,查尔斯·“查克”赫尔(Charles“ Chuck” Hull)为其系统获得了专利,这导致了第一台商业3D打印机SLA-1的发布。这标志着三维印刷技术的发展是一个重要的里程碑。在接下来的几年中,取得了各种进步。在1993年,Solidscape引入了具有可溶性支撑结构的高精度聚合物喷气制造系统。Fraunhofer学会于1995年开发了选择性激光熔化过程。作为成熟的添加剂制造工艺,很明显,金属加工不再仅限于传统方法,例如铸造和加工。到2010年代,金属最终用途的零件(例如发动机支架和大螺母)通过3D打印而不是需要传统的加工技术。添加剂制造的设计优势变得显而易见,使工程师期望进一步进入各种行业。在2012年,Filabot开发了一个系统,该系统启用了任何FDM或FFF 3D打印机,以更广泛的塑料打印。在2014年,发生了一些重大突破。本杰明·库克(Benjamin S.本地电动机首次亮相,这是一种功能齐全的车辆,完全使用ABS塑料和碳纤维打印,除了动力总成。空中客车公司还于2015年5月宣布,其新的空中客车A350 XWB包括3D打印制造的1000多个组件。ge Aviation在2017年透露,它已将设计用于增材制造来创建各种飞机零件。设计只有16个组件的直升机引擎可能是一个改变游戏规则,可以通过最大程度地减少当前陷入困境制造商的复杂零件的网络来大大简化全球供应网络。
简介牙科技术中数字技术的演变已迎来了假体的新的精确,定制和EF的新时代。从3D打印到4D,5D和6D打印的更先进的概念,这些技术正在改变牙科专业人员的设计,2制造和交付假肢设备的方式。假肢专注于恢复和替换受损或缺失的牙齿,通过整合增材制造3种技术,尤其是3D打印,已经看到了重大变化。这场革命已经使假肢,定制解决方案的生产更快,并提高了4个精度。但是,下一个前沿在于4D,5D和6D打印的应用,这有望在假肢护理中增加更复杂的和功能。
1 英国诺丁汉特伦特大学克利夫顿校区 SST 校区工程系,诺丁汉 NG11 8NS 2 哈尔滨工业大学复合材料与结构中心,哈尔滨市益矿街 2 号,150080,中国 3 哈尔滨工业大学航天科学与力学系,哈尔滨市西大直街 92 号,150001,中国 4 西北工业大学化工学院,陕西省西安市 710072,中国 5 北卡罗来纳州立大学化学与生物分子工程系,北卡罗来纳州罗利市 27695,美国 6 托莱多大学机械、工业与制造工程系,俄亥俄州托莱多市 43606,美国 7 康考迪亚大学,1455 Demaisonneuve West,# EV 4-233,蒙特利尔,魁北克,加拿大 H3G 1M8 8 亚琛工业大学纺织技术学院,德国亚琛 9 德克萨斯大学埃尔帕索分校航空航天与机械工程系,500 W University Ave,埃尔帕索,TX 79968 10 迪肯大学工程学院,维多利亚州吉朗 3216 澳大利亚 11 卢布尔雅那大学机械工程学院,Aškerčeva 6,1000 卢布尔雅那,斯洛文尼亚 12 德克萨斯大学达拉斯分校(UTD)机械工程系人形机器人、仿生机器人和智能系统(HBS 实验室),800 West Campbell Rd.,理查森,TX75080-3021 13 沃尔沃汽车公司研发部,哥德堡 418 78,瑞典 14 北京信息科学技术大学软件工程系北京科技大学,中国北京 100192 15 瑞典皇家理工学院工程设计系,斯德哥尔摩 10044,瑞典 16 芝浦工业大学工学院创新全球计划,日本东京丰洲 3-7-5 号 135- 8548 17 山形大学理工学院 4 Chome-3-16 Jonan,米泽,山形 992-8510 18 印度理工学院海得拉巴分校生物医学工程系,Kandi,Sangareddy,Telangana,502285,印度 19 拜罗伊特大学 20 素罗娜丽科技大学物理学院、科学研究所,呵叻 30000,泰国 21 素罗娜丽科技大学先进功能材料卓越中心(CoE-AFM),呵叻30000,泰国 22 科英布拉大学机械工程系,CEMMPRE,3030-788 科英布拉,葡萄牙 23 海德堡大学分子系统工程与先进材料研究所(IMSEAM),69120 海德堡,德国 24 南方科技大学机械与能源工程系,深圳 518055,中国 25 ICB UMR 6303 CNRS,贝尔福-蒙贝利亚尔理工大学,UTBM,法国 26 法国大学研究所(IUF),巴黎,法国 27 乔治亚理工学院乔治 W.伍德拉夫机械工程学院,佐治亚州亚特兰大 30332,美国 28 LRGP 7274 UMR CNRS,洛林大学,法国南锡 29 马来西亚诺丁汉大学科学与工程学院电气与电子工程系,马来西亚雪兰莪州士毛月 43500 30 阿尔伯塔大学机械工程系,加拿大艾伯塔省埃德蒙顿 T6G 1H9 31 杭州城市学院,中国杭州 32 浙江大学,中国杭州 路线图的客座编辑和通讯作者:mahdi.bodaghi@ntu.ac.uk;a.zolfagharian@deakin.edu.au