最初应用于1996年制药的开发,制药的3D印刷已成为许多研究和相当大的进步的来源。自那个时期以来进行的许多研究集中在探索和完善制药应用的3D打印技术。仍然,近年来,商业规模能力的发展已经大大提高。FDA批准了第一个3D印刷制药,Spritam,这项3D打印的研究,再加上其商业制造规模,证明了3D打印方法可用于大规模制造制药的事实。1
假体因其化妆品的吸引力而变得越来越流行。3D印刷已彻底改变了假肢,从而创造了高质量的牙科假体。它创建了详细的修复体,例如牙冠,桥梁,植入物支撑的框架,手术模板,假牙和正畸模型。此外,它节省了生产时间,但面临着挑战,例如高昂的支出以及对创新材料和技术的要求。本综述提供了对肢体修复中3D打印的用途的见解,从而介绍了它如何显着改变临床实践。本文讨论了不同的材料和技术。此外,它展示了3D打印来改善修复惯例的能力,并提出了未来研究的前景。
摘要。可以通过针对替代外加剂以及精确控制制造过程的多方面方法来促进建筑材料和与水泥和混凝土相关的工业过程的脱碳。减水化学外加剂在先进混凝土混合物的开发中发挥了至关重要的作用。为从玉米秸秆生物质生产航空燃料而开发的较新的生物质加工技术产生了更具反应性的木质素副产品,该副产品适合进行化学改性以模仿具有较小碳足迹的聚羧酸醚外加剂的性质。本研究考察了木质素基减水外加剂在用于 3D 打印的水泥浆和砂浆混合物中的使用。实验计划探索使用不同剂量的木质素基外加剂来生产具有适当挤出性和可建造性的 3D 打印样品。进行了流变学表征以确定各种混合物的流动曲线。最后,通过等温量热法监测水泥浆体的水化热,以评估木质素基掺合料对水泥水化过程的影响。本研究结果表明,使用生物质副产品(例如木质素基掺合料)具有巨大潜力,可以有效控制水泥基材料的新鲜状态性能。
招聘广告 爱尔兰戈尔韦大学工程/机械工程学院现招聘全职、固定期限博士后研究员/研究助理(先进制造(3D 打印)专业),欢迎符合条件的候选人申请。 大学致力于抓住混合工作机会,建设更具活力、更灵活、反应更快的大学,同时保持强大的教学、学习、研究标准和高生产力。大学将继续成为所有员工的主要工作场所,但个人混合安排请求可与直线经理结合大学混合工作政策进行审查。 该职位由爱尔兰企业局/建筑创新中心资助,有效期从 2024 年 11 月 1 日起至合同结束日期 2025 年 6 月 30 日。 项目信息: 背景:建筑行业依赖水泥基材料,但面临着延展性低、抗拉强度弱和易开裂等挑战。传统钢筋易受腐蚀,需要精确放置以防止水泥基质开裂时失效。聚合物/复合材料增强材料是一种耐用、无腐蚀的替代品。塑料和复合材料废弃物(如包装膜和工业残余物,如风力涡轮机叶片、航空航天部件)对环境污染贡献巨大。填埋会破坏生态系统,而焚烧会释放温室气体和毒素,这凸显了可持续废物管理解决方案的必要性。
压电致动器由带电石英板构成,当施加电压时石英板会膨胀。这些致动器以其快速响应时间、高输出力和实现亚纳米定位分辨率的能力而闻名。由于这些特性,压电致动器经常用于微夹钳,如许多研究报告所述。在设计包含压电致动器的机构时,必须对致动器施加预应力,因为产生的位移极小。此外,位移放大通常是必要的,以便在夹钳尖端获得所需的力。一种常见的放大技术是桥式放大器,它通过偏转平行梁将水平运动转换为垂直运动。使用桥式放大器的微夹钳的一个例子是将放大器的输出连接到梁屈曲机构,通过允许梁在压力下屈曲而不是断裂,确保夹钳尖端的力一致。然而,这种设计的恒定力应用仅限于小范围的位移,操纵的最小物体尺寸为 200 µm。
摘要:以其灵活性,生物相容性和电导率而闻名的导电水凝胶在医疗保健,环境监测和软机器人技术等领域中发现了广泛的应用。3D打印技术的最新进步改变了导电水凝胶的制造,为传感应用创造了新的机会。本综述概述了3D打印的导电水凝胶传感器的制造和应用的进步。首先,简要审查了导电水凝胶的基本原理和制造技术。然后,我们探索用于导电水凝胶的各种3D打印方法,讨论它们各自的优势和局限性。审查还总结了3D打印导电水凝胶传感器的应用。此外,突出显示了3D打印导电水凝胶传感器的观点。本评论旨在使研究人员和工程师对当前3D打印的导电水凝胶传感器的景观有所了解,并激发这个有前途的领域的未来创新。
doi:https://dx.doi.org/10.30919/es1156设计和制造具有3D打印和生命周期分析,可回收可回收聚合物的H-Darrieus Windrieus WindrieusandrésAndrésFolivera f olivera f olivera,1,1,2 Edwin Chica,2,*和Henry a Gorcolado 1,* Arfording Inderdive Issrunt(3)彻底改变了具有复杂形状的组件的开发,从而可以使用可塑性和易于重塑的空气动力学材料,从而实现更好的发达表面,从而有利于空气动力学的形状;涉及流体动力学,能源和运输行业。从这一进步中受益的一个行业是风能。在这项研究中,小型的H-Darrieus型风力涡轮机的设计旨在由3D打印机制造,使用碳纤维的聚对乙二醇terephathalate(PETG)的细丝。涡轮机是在实验室尺度上制造的,高度和直径分别为0.20 m和0.22 m。该模型后来在风洞中进行了测试。在尖端速度比(TSR)为0.12时,获得的最大功率系数为0.21。考虑了制造过程,操作以及将其拆卸的生命周期分析,并将其拆卸为回收或重复使用。结果表明,H-Darrieus涡轮机的制造是针对环境和社区的可持续解决方案。这项研究显示了低规模风力涡轮机的设计,材料和环境影响计算中的创新结果。
复合材料增材制造技术的进步已经改变了航空航天、医疗设备、组织工程和电子产品。增强 3D 打印物体性能的一个关键方面是通过在结构中嵌入和定向增强材料来微调材料。现有的定向这些增强材料的方法受到图案类型、排列和粒子特性的限制。声学提供了一种通用的方法来控制粒子,而不受其大小、几何形状和电荷的影响,从而实现复杂的图案形成。然而,将声学集成到 3D 打印中一直具有挑战性,因为声场在聚合层和未聚合树脂之间散射,从而产生不必要的图案。为了应对这一挑战,开发了一种创新的声学辅助体积 3D 打印机 SonoPrint,它可以同时对整个结构进行增强图案化和打印。SonoPrint 通过在制造的结构中嵌入增强颗粒(例如微观玻璃、金属和聚苯乙烯)来生成机械可调的复合几何形状。该打印机采用驻波场在感光树脂中直接创建目标粒子图案(包括平行线、径向线、圆形、菱形、六边形和多边形),只需几分钟即可完成打印。SonoPrint 增强了结构特性,有望推进体积打印,解锁组织工程、生物混合机器人和复合材料制造中的应用。
近年来,3D打印技术引起了很多关注。由于其低生产成本以及制造复合和几何形状的能力,在许多行业中使用3D打印技术被广泛接受。本文通过将3D打印技术用于超声扫描仪应用程序,介绍了探针持有人的制造。3D打印探针持有人的制造始于Taguchi技术设计(DOE)。确定了三个主要影响:打印温度,层厚度和填充密度。SolidWorks软件用于构建探针持有人的计算机辅助设计(CAD)模型。随后,将CAD模型文件转换为3D打印过程的标准Tessellation语言(STL)文件。使用3D打印机成功制造了探针持有人,在3D印刷产品的外表面上没有任何缺陷。基于弯曲测试结果,可以得出结论,探针持有人的强度是由层厚度归因于层的。