线性覆盖时间不太可能。。。。。。。q uentin d ubroff和j eff k ahn 1均匀的树在拓扑多边形,SLE的分区函数(8)以及C = -2对数CFT中的相关性。。。。。。。。。。。。。。。。。。。。。。。。m ingchang l iu,e veliina p eltola和h a a a a a a a a a a a a a a a w u 23通过噪声正规化,用于由高斯粗糙路径驱动的粗糙差分方程式,以及d uboscq 79相关性衰减,用于较弱的brown a rka a rkaiy a rkari和s kyot a的相关性衰变无界域中的正常反射:从瞬态到稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。m iha brešar,leksandar m ijatovi´ c和ndrew w ade 175溶液在随机热方程中,在临界状态下不会爆炸,而随机热方程未爆炸。。。。。。。。。。。。。。。。。。。。michael s alins 223随机矩阵的自由总和h ong c hang j j i和j aeewhi p ark 239一种确定点过程方法的缩放和局部限制随机幼小tableaux的确定点过程方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。j acopo b orga,cédricBoutillier,v alentinféray和p ierre -loïcMéliot299 A超级偏见的当地时代的随机微分方程
模拟理论认为意识、现实以及我们对这些现实的感知都是通过详细的计算机模拟体现出来的。Bostrom (2003) 提出了模拟理论,至少是其流行的形式,他考虑了一种先进的后人类物种获得强大的计算能力,大大超越了我们目前的局限性,并对模拟其祖先产生了兴趣。Bostrom 认为这可能是我们存在的一种解释。然而,从最广泛的意义上讲,模拟理论没有理由必须依赖这些人类后代。任何拥有足够计算能力和想象力的物种都可以产生令人信服的现实模拟,并且只要有足够的想象力,这种外来物种也没有理由必须模拟与其自身稍微相似的现实。当我们想象一个特别狡猾的非人类模拟器模拟的现实是故意设计来迷惑其居民,让他们相信他们是由他们的后人类后代模拟的时,这个命题尤其有力。先验地,这些都是简单的逻辑可能性,我们无法从所有可能性中排除它们。我们提醒大家,目前尚不清楚“足够的计算能力”究竟意味着什么,以及这是否可以实现。为了便于讨论,我们承认,即使不是在我们的现实中,而是在一个与我们完全不同的假想模拟器的现实中,足够的计算能力是可以实现的,因为没有理由相信不是这样。
增强了极端热量,这是温度时间序列[1]的创纪录高数,损害人类健康,福利和基础设施的损害以及生态系统[2,3]。热量的影响随温度和其他热量指数非线性增加[4]。因此,重要的是要准确预测有关当前天气动态和持续气候变化的信息的极端风险[5]。通常,极端温度是使用统计极端价值理论建模的,该理论可以渐近地描述最极端值的分布,这是从任何广泛的概率分布中提取的足够大数量集中的分布[6]。通常通过使用电台观测值或天气和气候模型输出的年度最高温度(表示为TXX [7])的时间序列来实现这一目标。基于极值理论,假定TXX值是从广义极值分布(GEVD)[8]中生成的。使用最大似然或其他合适的方法从TXX数据估算GEVD参数后,可以估计温度超过任何指定阈值的可能性[9-12]。为了说明气候变化的影响,GEVD通常被认为是非平稳的,其位置参数将其模型为全球平均温度的线性函数,并且可能是其他协变量[13]。极端温度已使用类似的归因研究方法进行了建模,该方法旨在量化观察到的最近的热波的风险的人为升高[14-17]。由世界天气归因协作开发的此类归因研究的标准方法是估计of of of of of of of temere热量的可能性,假设TXX或其他基于温度的时间序列遵循GEVD,将位置参数作为全球平均温度的线性函数。将这种概率与从同一统计模型中得出的概率进行比较,当时全球平均温度设置为工业化前基线,而人为变暖增加了因素(概率比),从而增加了观察到极端的可能性[18,19]。
周期驱动系统在科学和技术中无处不在。在量子动力学中,即使是少量的周期驱动自旋也会导致复杂的动力学。因此,了解此类动力学必须满足哪些约束是很有意义的。我们为每个周期数推导出一组约束。对于纯初始状态,受约束的可观测量是重复概率。我们使用约束来检测与未考虑的环境的不良耦合以及驱动参数的漂移。为了说明这些结果与现代量子系统的相关性,我们在捕获离子量子计算机和各种 IBM 量子计算机上通过实验展示了我们的发现。具体来说,我们提供了两个实验示例,其中这些约束超出了与已知单周期约束相关的基本界限。该方案可能用于检测无法通过经典方式模拟的量子电路中的环境影响。最后,我们表明,在实践中,测试 n 循环约束仅需执行 O(√n) 个循环,这使得评估与数百个循环相关的约束变得现实。
摘要 - 可恢复的智能表面(RIS)是下一代网络的有前途技术。在本文中,我们利用从随机几何形状的工具来研究RIS辅助毫米波(MMWave)蜂窝网络的性能。特别是,将基站(BSS)的位置(BS)和障碍物的中点建模为两个独立的泊松点过程(PPP),其中封锁是由线布尔模型建模的,而块的一部分则覆盖了RISS。将MMWave通信的区分特征,即,视线线(LOS)和非线视线(NLOS)(NLOS)的方向波束形成和不同的路径损失定律被纳入分析中。我们得出了覆盖率概率和面积光谱效率的表达。在特殊情况下,覆盖范围的概率也有足够的小。数值结果表明,通过RISS的大规模部署可以实现更好的覆盖效果和更高的能量效率。此外,还研究了BS和RIS密度之间的权衡,结果表明,RIS是传统网络的出色补充,可以通过有限的功耗来提高覆盖范围的概率。索引项 - 可恢复的智能表面,随机几何,毫米波。
AI6101:应用统计和概率 [3 1 0 4] 统计学基础:统计学在工程中的作用、基本原理、回顾性研究、观察性研究、设计实验、随时间观察过程、机械和经验模型、概率和概率模型、集中趋势测量:平均值、中位数和众数、离散度测量-范围、四分位差、平均差、标准差、变异系数、偏度、峰度。概率分布:样本空间和事件、概率的解释和公理、加法规则、条件概率、乘法和总计、概率规则、贝叶斯定理、随机变量、随机变量的概念、伯努利分布、二项分布、泊松分布、正态分布。相关性和回归:概念和类型、卡尔·皮尔逊方法、秩斯皮尔曼方法、最小二乘法、离散随机变量和概率分布。连续随机变量和概率分布。联合概率分布。假设检验:假设检验、零假设和备择假设、显著性水平、单尾和双尾检验、大样本检验(单均值检验、均值差检验、单比例检验、比例差检验)、t 检验、F 检验、卡方检验。参考文献:
摘要:在翻译研究(TS)中,普遍的研究方法是定性的。但是,研究翻译过程和结果的重要性增加了定量方法的重要性。这提出了一个挑战,因为许多TS学者对这些技术缺乏熟悉。本文提出了一种解决方案,概述了一种有效的定量研究方法,并强调了此类研究的关键方面以解决此问题。定量研究的关键组成部分是明确的研究设计,可以通过几个步骤来确保彻底和准确的结果创建。必须考虑定义所研究的样本和人群,以及信号涉及的变量的范围,并指出研究假设和问题。为了确定所得数据的可理解性和意义,应牢记哪些结果可以肯定或反驳假设,以及哪些类型的结果很重要。虽然定量研究通常是重点,但值得整合定性分析并考虑所得产品。关键词:定性研究,定量研究,翻译研究(TS),统计,研究设计,混合方法。
本书最初是滑铁卢大学三年级本科纯数学课程 PMATH 343“量子信息数学”的课程笔记。我将把它放到网上,供任何觉得有用的人使用。有一个较长的介绍介绍了本书的内容,但是简短的版本是:这是一本本科教科书,涵盖高级线性代数(以及一些基本的矩阵分析)和量子概率(量子力学的基础数学框架),适合想要学习量子信息和量子计算的读者。本书是从“纯数学”的角度编写的:使用定理和证明来研究概念,我们尝试以独立于基础的方式进行线性代数。希望从这个描述中可以清楚地看出,这不是一本关于量子力学的书。量子概率是量子力学的数学框架,但本书是关于这个框架的数学方面,而不是关于如何实际使用该框架。此外,除了一些非常基本的内容外,本书并没有涉及太多有关信息或计算的内容。如果你主要对量子计算感兴趣,则无需从本书开始;有许多优秀的本科教科书,你只需学习线性代数入门课程即可入门。事实上,大多数从事该领域工作的人只是使用基于基础的线性代数方法。因此,从其他地方开始是完全合理的,如果你发现自己问数学问题,例如“为什么克罗内克积是这样定义的?”,请回到本书。另一方面,从一开始就知道自己想学习量子计算及其背后的所有数学知识的读者(这似乎描述了大多数在滑铁卢大学参加该课程的学生)可以从这里开始:读完本书后,你将熟练掌握量子计算中使用的数学语言,并准备好阅读其他书籍或参加其他课程。本书讨论的大多数线性代数概念在量子信息之外也得到广泛应用。对于主要对其他应用感兴趣的读者来说,量子概率是一种很好的入门方式。
脑机接口 (BCI) 分析个体与设备或外部环境直接交互的意图 (Wolpaw 等,2000)。个体的意图可以通过脑电图 (EEG) 来解码,脑电图由于其高时间分辨率、可靠性、可负担性和便携性而成为一种成熟的非侵入式技术。目前,由于机器学习和深度学习方法的发展,BCI 已经在辅助和临床领域得到应用。快速串行视觉呈现 (RSVP) 是在同一空间位置以每秒多张图像的高呈现速率顺序显示图像的过程。基于 RSVP 的脑机接口 (BCI) 是一种特殊类型的 BCI 系统 (Marathe 等,2016;Wu 等,2018)。它被证明是一种增强人机共生和人类潜能的可实现方法 (Manor 等,2016)。基于RSVP的BCI是基于人类视觉进行目标检测最常用的技术,其中使用的事件相关电位(ERP)是P300和N200(Wei等,2022)。人类视觉系统是一种非常复杂的信息处理机器。人类具有很强的学习、认知能力和敏感性,可以一眼就识别物体(Sajda等,2010)。因此,基于RSVP的BCI可以利用人类视觉的灵活性获得对环境的快速感知。当前的研究主要集中在提出适用于基于RSVP的BCI的更可靠、更有效的特征提取算法。由于其非平稳性和低信噪比(SNR),在RSVP任务中很难区分目标和非目标刺激。Sajda等人。 (2010 年)开发了一种分层判别成分分析(HDCA)算法,该算法采用 Fisher 线性判别(FLD)来计算空间域中的权重