更快的设计:OSD32MP2X-PM简化了高速DDR4接口的设计过程,提供了一个可靠的起点并节省了数月的设计时间。〜 〜60%的板区域减少:使用3D SIP技术OSD32MP2X-PM将STM32MP2,DDR4集成,而被动剂与DDR4本身相同的包装,节省表面和路由区域。降低总拥有成本:使用SIP最多将工程设计时间减少9个月,降低您的PCB和组装成本,简化您的供应链,并确保更可靠的系统。世界一流的支持:访问参考设计,应用程序注释和OctavoSystems.com上的活跃社区。此外,我们还提供用于审查原理图和布局的服务,以最大程度地发挥第一通道设计的成功。
在没有错误的情况下,根据量子力学处理信息的机器原则上可以解决超出任何传统计算机计算能力的问题。实际上,可扩展的通用量子计算机必须将纠错和容错作为其操作不可或缺的一部分,而这对底层量子硬件的要求可能在未来几年内都无法实现 [1]。因此,在当前嘈杂的中等规模量子 (NISQ) 设备时代 [2],该领域的大部分努力都集中在看似不那么雄心勃勃的挑战上。位居榜首的是模拟量子模拟器的开发,这里将其定义为无需纠错的设备,但在建模复杂量子系统等任务上仍有潜力超越传统计算机 [3,4]。最近的例子包括使用捕获离子 [5 – 7]、里德堡原子 [8,9] 和超导量子比特 [10,11] 来模拟大(> 50)自旋系统中的相变和其他现象。这大致是目前在传统计算机上无法进行数值建模的规模。量子模拟通常需要访问相互作用的多体系统的高度纠缠态。人们早就知道,这样的系统也倾向于支持量子混沌,因为它们的时间演化对扰动高度敏感[12-14]。这表明了与量子模拟相关的两个不同的复杂性概念,一个与量子态的性质有关,另一个与系统动力学的性质有关。纠缠态之所以复杂,是因为预测粒子间相关性所需的信息会随着系统规模的扩大而呈指数增长,而混沌动力学之所以复杂,是因为预测量子轨迹所需的信息会随着时间的推移呈指数增长[15]。两者都会增加整体的复杂性和脆弱性
图 2:生物神经元是相互通信并在突触中存储信息的细胞。一个神经元可以有数十万个突触,其内容由传感输入动作电位回忆。神经元整合活跃突触的值,并在整合值达到或超过阈值时产生动作电位输出。人工神经网络模拟了类似的行为。
摘要 — 低位宽量化神经网络 (QNN) 通过减少内存占用,支持在受限设备(如微控制器 (MCU))上部署复杂的机器学习模型。细粒度非对称量化(即,在张量基础上为权重和激活分配不同的位宽)是一种特别有趣的方案,可以在严格的内存约束下最大限度地提高准确性 [1]。然而,SoA 微处理器缺乏对子字节指令集架构 (ISA) 的支持,这使得很难在嵌入式 MCU 中充分利用这种极端量化范式。对子字节和非对称 QNN 的支持需要许多精度格式和大量的操作码空间。在这项工作中,我们使用基于状态的 SIMD 指令来解决这个问题:不是显式编码精度,而是在核心状态寄存器中动态设置每个操作数的精度。我们提出了一种基于开源 RI5CY 核心的新型 RISC-V ISA 核心 MPIC(混合精度推理核心)。我们的方法能够完全支持混合精度 QNN 推理,具有 292 种不同的操作数组合,精度为 16 位、8 位、4 位和 2 位,而无需添加任何额外的操作码或增加解码阶段的复杂性。我们的结果表明,与 RI5CY 上的基于软件的混合精度相比,MPIC 将性能和能效提高了 1.1-4.9 倍;与市售的 Cortex-M4 和 M7 微控制器相比,它的性能提高了 3.6-11.7 倍,效率提高了 41-155 倍。索引术语 —PULP 平台、嵌入式系统、深度神经网络、混合精度、微控制器
物质的拓扑有序相逃避了朗道的对称破缺理论,其特点是各种有趣的特性,如长程纠缠和对局部扰动的内在稳健性。将它们扩展到周期性驱动系统会产生在热平衡中被禁止的奇异新现象。在这里,我们报告了对这种现象的迹象的观察——预热拓扑有序时间晶体——其中可编程超导量子位排列在方格上。通过用表面码哈密顿量周期性地驱动超导量子位,我们观察到离散时间平移对称破缺动力学,这种动力学仅表现在非局部逻辑算子的亚谐波时间响应中。我们进一步通过测量非零拓扑纠缠熵并研究其后续动力学,将观察到的动力学与底层拓扑序联系起来。我们的研究结果证明了使用嘈杂的中尺度量子处理器探索物质的奇异拓扑有序非平衡相的潜力。
超导量子比特为大规模容错量子计算提供了一种有前途的方法。然而,平面上的量子比特连接通常仅限于几个相邻的量子比特。实现更长距离和更灵活的连接(鉴于纠错码的最新发展,这尤其有吸引力)通常涉及复杂的多层封装和外部布线,这需要大量资源并且可能造成保真度限制。在这里,我们提出并实现了一种高速片上量子处理器,它支持可重构的全对全耦合,具有较大的开关比。我们在四节点量子处理器中实现了该设计,该处理器采用模块化设计,包括一个与两个单独的量子比特承载基板耦合的布线基板,每个基板包括两个单量子比特节点。我们使用该设备演示所有量子比特对的可重构控制 Z 门,基准平均保真度为 96 . 00% 0 . 08%,最佳保真度为 97 . 14% 0 . 07% ,主要受量子比特失相限制。我们还生成分布在各个模块上的多量子比特纠缠,显示 GHZ-3 和 GHZ-4 状态的保真度分别为 88 . 15% 0 . 24% 和 75 . 18% 0 . 11% 。这种方法有望有效扩展到更大规模的量子电路,并为实现受益于增强的量子比特连接性的量子算法和纠错方案提供了途径。
使用 CogniSAT-HCS 软件可以轻松部署定制计算机视觉 (CV) 管道。该软件库支持特定于应用程序的 CV 和 ISP 管道,这些管道利用了节能处理器流硬件块和矢量引擎上实现的软件过滤器的组合。部署到在处理器上运行的 CogniSat-HCS 仅涉及传输单个配置文件,运行时更新可以更新管道,而无需重新编译应用程序或重新启动系统。可以在设备上的单个流程中执行多个 CV 和 NN 阶段,从而实现 NN 预处理和后处理以及 NN 链接。
更快的设计:OSD32MP2x-PM 简化了高速 DDR4 接口的设计流程,提供了可靠的起点并节省了数月的设计时间。 电路板面积减少约 60%:OSD32MP2x-PM 使用 3D SiP 技术将 STM32MP2、DDR4 和无源器件集成到与 DDR4 本身大小相同的封装中,节省了表面和布线面积。 降低总拥有成本:使用 SiP 可将工程设计时间缩短多达 9 个月,降低 PCB 和组装成本,简化供应链并确保系统更可靠。 世界一流的支持:访问 octavosystems.com 上的参考设计、应用说明和活跃社区。此外,我们还提供原理图和布局审查服务,以最大程度地提高首次设计的成功率。
计算机中的大多数操作(如算术或逻辑运算)都是在 ALU 中执行的。例如:假设主存储器中有两个数字需要相加。SOL:它们被带入 ALU,在那里进行实际的加法运算,然后将总和存储在存储器中,然后从那里发送到输出设备。同样,任何其他算术或逻辑运算都可以以类似的方式执行。
通用动力公司最新的声纳浮标处理软件(包括被动和主动能量图以及强大的跟踪算法)旨在增强战术意识,同时显著减少操作员的工作量。一项新功能是“CUDA”(计算机化水下探测助手),这是一款“APP”,旨在自动评估嘈杂沿海地区的战术情况,而无需操作员干预。