在生物信息学中,蛋白质二级结构预测在理解蛋白质功能和相互作用中起着重要作用。本研究介绍了TE_SS方法,该方法使用基于变压器编码的模型和ANKH蛋白质语言模型来预测蛋白质二级结构。根据蛋白质的二级结构(DSSP)版本4。使用各种数据集对模型的性能进行了严格评估。此外,本研究还将模型与八个结构类预测中的最新方法进行了比较。调查结果表明,TE_SS在九级和三类结构预测中表现出色,同时还表现出八类类别的熟练程度。这是由于其在QS和SOV评估指标中的性能而强调的,这证明了其识别复杂蛋白质序列模式的能力。此进步为蛋白质结构分析提供了重要的工具,从而丰富了生物信息学领域。
大量对癌症基因组进行测序的努力已经汇编了一份令人印象深刻的癌症突变目录,揭示了少数“标志性癌症通路”的反复利用。然而,揭示这些通路和其他通路中的突变蛋白组如何劫持促增殖信号网络并决定治疗反应仍然具有挑战性。在这里,我们展示了癌症驱动蛋白-蛋白质相互作用因其他癌症驱动因素而丰富,突出了物理相互作用图在解释已知以及发现新的疾病促进通路相互关系方面的能力。我们假设,通过系统地绘制癌症中的蛋白质-蛋白质和基因相互作用(从而创建癌细胞图谱),我们将创建资源,以此将患者的突变背景化为受干扰的通路/复合物,从而指定匹配的靶向治疗鸡尾酒。
摘要:16蛋白溶解度在各种生物技术,工业和17种生物医学应用中起着至关重要的作用。随着测序和基因合成成本的降低,18采用了高通量实验筛选以及量身定制的19个生物信息学预测,已经见证了开发20种新型功能酶(EOI)的快速增长趋势。高蛋白质溶解度率是必不可少的21,准确的溶解度预测是一项艰巨的任务。随着深度学习技术的继续发展,基于注意力的蛋白质语言模型23(PLM)可以在更大程度上从蛋白质序列中提取固有信息。24利用这些模型以及蛋白质溶解度的可用性增加25从结构数据库(如蛋白质数据库(PDB))推断出的数据,具有增强蛋白质溶解度预测的26个潜力。在这项研究中,我们策划了27个更新的大肠杆菌(E.COLI)蛋白溶解度数据集(Uesolds),而28种则采用了多个PLM和分类层的组合来预测蛋白29溶解度。最佳表现最佳模型,称为蛋白质语言30基于模型的蛋白质溶解度预测模型(PLM_SOL),与以前报道的模型相比有31个显着改善,可实现5.7%32的准确性提高,F1_SCORE提高9%,而33个独立测试集的MCC得分提高了10.4%。此外,利用我们内部34合成的蛋白质资源作为测试数据的其他评估,包括各种类型的酶,35还展示了PLM_SOL的出色性能。59总体而言,PLM_SOL在独立的测试集和37个实验集中表现出36个一致且有希望的性能,从而非常适合促进大规模的EOI研究。38 PLM_SOL可作为独立程序可用,并在39 https://zenodo.org/doi/10.5281/zenodo.10675340上作为易于使用的型号。40 41引言42蛋白质的正确折叠以保持足够的溶解度和稳态,对于几乎每个基于蛋白质的生物学过程而言,必不可少的43。不满意的溶解度或44聚集可以阻碍基于蛋白质的药物发育,例如抗体产生。45抗体的低溶解度可能会限制其保质期,并可能诱导46个不良免疫反应(1-3)。除了抗体之外,由于速度降低了48种测序和基因合成的成本以及49个高通量功能筛选平台的持续下降,因此越来越多的47种兴趣(EOI)的酶以速度越来越高(4-6)。在这些大规模的EOI 50筛查研究中,提高蛋白质溶解度预测的准确性可以提高51蛋白质纯化的成功率,并促进下游生物物理或52生化特征。普通宿主,例如细菌细胞,昆虫细胞,酵母53细胞,植物和哺乳动物细胞,通常用于重组蛋白表达54(7)。在这些选择中,细菌细胞(通常是大肠杆菌(大肠杆菌))提供了55个易于遗传操作和成本效益的优点,因此将56作为重组蛋白质产生的主要平台之一(8)。提高大肠杆菌中蛋白质溶解度预测的57精度具有降低58个实验成本并提高新型EOI发现成功率的巨大潜力。
摘要.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................1327 重要性陈述................. ... . ... . ... ... 1328 B. 调节亚基. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332 F. 代谢调节. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... . . . . . . . . . . . . . . . . . . . . 1335 B. 蛋白激酶 A 催化亚基的突变 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... .......................................................................................................................................................................................................................1342B.内分泌和代谢疾病.................................. ... .. 1342 2. 库欣综合征和肾上腺皮质腺瘤........................................................................................................................................................................ .................................................................................................................................. .................................................................................................................. 1344 3. 心脏粘液瘤........................................................................................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ 1344 4. 纤维发育不良和 McCune-Albright 综合征. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................................................................................................ ........................................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ 1346 7. 失活甲状旁腺激素/甲状旁腺激素相关肽信号传导障碍 ........................................................................................................................................................................................................ ........................................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ 。 。 。 。 。 。 。 。 。 。 。 。 。 。 1346
背景和客观:生物体的功能及其生物学过程源于基因和蛋白质的表现。因此,量化和预测mRNA和蛋白质水平是科学研究的关键方面。关于mRNA水平的预测,可用的方法使用转录起始位点(TSS)上游和下游的序列作为神经网络的输入。最新模型(例如Xpresso和basenjii)预测利用卷积(CNN)或长期记忆(LSTM)网络的mRNA水平。但是,CNN预测取决于卷积内核的大小,LSTM遭受捕获序列中的长期依赖性。据我们所知,关于蛋白质水平的预测,没有通过利用基因或蛋白质序列来预测蛋白质水平的模型。方法:在这里,我们利用一种新的模型类型(称为感知器)用于mRNA和蛋白质水平预测,从而利用了具有注意力调节的基于变压器的体系结构来参加序列中的长期相互作用。此外,感知器模型克服了标准变压器体系结构的二次复杂性。这项工作的贡献是1。dnaper-ceiver模型,以预测TSS上游和下游序列的mRNA水平; 2。Pro-teminepeiver模型,以预测蛋白质序列的蛋白质水平; 3。蛋白质和dnapceiver模型,以预测TSS和蛋白质序列的蛋白质水平。结果:这些模型是在细胞系,小鼠,胶质母细胞瘤和肺癌组织上评估的。结果表明,感知器型模量在预测mRNA和蛋白质水平方面的有效性。结论:本文介绍了mRNA和蛋白质水平预测的感知器结构。将来,将调节和表观遗传信息插入模型可以改善mRNA和蛋白质水平的预测。源代码可在https://github.com/matteostefanini/dnaperceiver
mastvei tshishyn是比利时的Libre de Bruxelles大学计算生物学和生物信息学集团的博士候选人。他的研究重点是研究蛋白质变异的研究以及预测突变对蛋白质不同生物物理特征的影响的方法。Fabrizio Pucci是比利时的Libre de Bruxelles大学计算生物学和生物信息学集团的助理教授。他的主要研究领域包括蛋白质和RNA设计,遗传变异解释,基于AI的方法开发和免疫信息学。Marianne Rooman是科学研究基金的荣誉研究主任,也是比利时的Libre de Bruxelles大学计算生物学和生物信息学集团的教授。她在多个研究领域具有专业知识,包括结构性生物信息学,量子化学和机器学习技术在生物分子系统中的应用以及数学生物建模。收到:2023年6月30日。修订:2023年10月2日。接受:2023年12月5日©作者2024。牛津大学出版社出版。这是根据Creative Commons Attribution许可条款(https://creativecommons.org/licenses/4.0/)分发的一篇开放访问文章,该文章允许在任何媒介中不受限制地重复使用,分发和再现,前提是适当地引用了原始工作。
作者:J Alegre-Cebollada · 2021 · 被引用 26 次 — 蛋白质如何响应拉力,或蛋白质纳米力学,是生物系统形态和功能的关键因素。事实上,传统的...
磷酸酶和激酶分别维持去磷酸化和磷酸化蛋白质的平衡,而这些蛋白质对于关键的细胞功能必不可少。这种平衡的失衡或功能异常会导致不利的细胞效应,而这些效应与许多疾病的发展有关。蛋白酪氨酸磷酸酶 (PTP) 催化酪氨酸残基上蛋白质底物的去磷酸化,它们参与细胞信号转导和癌症、炎症和代谢疾病等疾病,使其成为有吸引力的治疗靶点。然而,PTP 在治疗学开发中已被证明具有挑战性,并因此获得了“无法用药”的不良声誉。尽管如此,在过去十年中,在抑制 PTP 方面取得了长足的进步。在这里,我们讨论了被称为丝裂原活化蛋白激酶 (MAPK) 磷酸酶 (MKP) 的 PTP 亚家族的小分子抑制进展。我们回顾了已被证明对 MKP 小分子抑制成功的策略和抑制剂发现工具,并讨论了 MKP 抑制未来可能产生的效果。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。