时间表以及未来Orka潜艇制造商提出的任何临时或桥接解决方案,这应该是波兰决策者的主要考虑因素。 因此,本文还将研究每种潜艇类型的运营能力的发展状况和关键方面,以评估与获取尚未引入活跃服务的设计相关的潜在风险。 对潜在发展相关的挑战的分析还将考虑将其他系统的整合,例如攻击导弹,无人驾驶的水下车辆(UUV)和先进的Pro Pulsion Systems。 虽然ORKA程序中的所有潜在竞争者都提出了这些功能,但上述某些系统时间表以及未来Orka潜艇制造商提出的任何临时或桥接解决方案,这应该是波兰决策者的主要考虑因素。因此,本文还将研究每种潜艇类型的运营能力的发展状况和关键方面,以评估与获取尚未引入活跃服务的设计相关的潜在风险。对潜在发展相关的挑战的分析还将考虑将其他系统的整合,例如攻击导弹,无人驾驶的水下车辆(UUV)和先进的Pro Pulsion Systems。虽然ORKA程序中的所有潜在竞争者都提出了这些功能,但上述某些系统
(HSST) 计划的负责人塔克表示,RSH 是实现 HAPCAT 项目目标的关键要素。“我们的目标是开发和演示第一个洁净空气、真焓高超声速测试设施,该设施能够将模拟飞行条件从 4.5 马赫变为 7.5 马赫,以进行航空推进、气动和气动光学测试,”他表示。HAPCAT 的测试正在纽约州朗康科玛的 Alliant Techsystems (ATK) 通用应用科学实验室设施进行。最终,在 HAPCAT 中开发和验证的技术将被纳入 AEDC 的空气动力学和推进测试单元。塔克解释说,目前的国家高超声速航空推进地面测试设施使用流内燃烧或污染来实现进气的高温,然后通过固定几何形状的单马赫数喷嘴输送到发动机。 “污浊空气不能代表超燃冲压发动机在飞行过程中遇到的空气,会对准确量化吸气式超燃冲压发动机推进系统的关键性能和操作性指标产生不利影响,”他说。“这会增加采购项目的飞行测试风险,并迫使开发人员增加额外的设计裕度,而这可能会降低系统性能。”
与流星体以外的物体的碰撞可能很严重,减少威胁的压力将越来越大。欧空局于 1986 年成立了一个空间碎片工作组,一份报告即将出台。据估计,70% 的碎片来自军事爆炸,而这些爆炸现已被禁止。北美航空航天防御司令部 (NORAD) 跟踪了 7,000 多个大于 10 厘米的物体。海军空间监视中心 (Dr. S. H. Knowles, Dahlgren, VA, USA) 为平民和天文学家提供目录。由于相互碰撞,碎片的数量不断增加,如果不采取任何措施,50 年后可能会达到临界密度。由于成本原因,通过回收来清理小碎片如今被认为是不现实的。短期解决方案,例如将过时的卫星推进到“dis-
流星体以外的物体撞击地球可能十分严重,减少这种威胁的压力将越来越大。欧洲航天局于 1986 年成立了一个太空垃圾工作组,不久将发布一份报告。据估计,70% 的碎片来自军事爆炸,而这些爆炸现已被禁止。北美防空司令部 (NORAD) 跟踪了 7,000 多个大于 10 厘米的物体。海军空间监视中心 (Dr. SH Knowles, Dahlgren, VA, USA) 为平民和天文学家提供了目录。由于相互碰撞,碎片的数量不断增加,如果不采取任何措施,50 年后可能会达到临界密度。由于成本原因,通过回收来清理小碎片现在被认为是不现实的。短期解决方案,例如将过时的卫星推进到“dis-discount”轨道,
螺旋桨驱动,倒车不应导致推进机械过载。(3) 当蒸汽涡轮机用作主推进装置时,它们应能够在倒车自由航线中保持至少 70 % 的前进转速,相当于最大连续前进功率,持续至少 15 分钟。倒车试验应限制在 30 分钟以内或按照制造商的建议进行,以避免涡轮机因“风阻”和摩擦的影响而过热。(4) 主推进系统应进行测试,以证明倒车响应特性。测试应至少在推进系统的操纵范围内并从所有控制位置进行。测试计划应由船厂提供并经验船师接受。如果制造商已定义具体操作特性,则应将其纳入测试计划。(2018) (5) 推进装置的反向特性,包括可调螺距螺旋桨的叶片螺距控制系统,应在试验期间进行演示和记录。(2018)
螺旋桨驱动,倒车不应导致推进机械过载。 (3) 当蒸汽涡轮用作主推进装置时,它们应能在倒车自由航线中保持至少 70 % 的前进转速,相当于最大连续前进功率,持续至少 15 分钟。倒车试验应限制在 30 分钟以内或按照制造商的建议进行,以避免涡轮因“风阻”和摩擦的影响而过热。 (4) 主推进系统应进行测试,以证明倒车响应特性。测试应至少在推进系统的操纵范围内和所有控制位置进行。船厂应提供测试计划,并经验船师接受。如果制造商已定义特定的操作特性,则应将其包括在测试计划中。 (5) 推进装置的换向特性,包括可调螺距螺旋桨的桨叶变距控制系统,应在试验期间进行演示和记录。(2018)
摘要在整个船舶设计过程的早期阶段开发的船舶推进系统的建筑对船舶的整体设计和性能产生了很大的影响。到达最后一艘船舶保护架构的设计空间探索可能是一个相当复杂的过程,用于高性能“组合”的“船舶推进系统”,旨在实现多个,经常相互冲突的设计目标。本文提出了一个基于基于模型的“技术经济和环境风险评估”(TERA)方法的设计空间探索过程的新过程,该方法是使用混合的“多重标准决策制定”(MCDM)程序执行的,以从竞争的推进系统中选择构建设计空间的竞争推进系统中的解决方案。该过程利用了从开发模型的性能模拟产生的性能数据的组合,以及基于比较的专家意见的指标,用于船舶设计过程中无法选择“妥协解决方案”的信息。本文包括一个说明性的示例,说明了拟议过程在设计空间探索的拟议过程中,用于合并的推进系统体系结构。
飞机系统电气化、电力推进研究以及从根本上对电动飞机的资金和商业投入一直呈上升趋势。电气化不仅能够减少排放,还可以释放更节能的飞机以及全新架构和用例的潜力。电气化还可能彻底改变航空航天业的供应基础,对现有供应商构成生存威胁,并为新进入者提供进入市场的机会。在本次 Think:Act 中,罗兰贝格评估了电动飞机的前景和可能的应用,以及在发生任何重大变化之前需要克服的许多技术和监管障碍。我们首先讨论电动飞机的历史以及更多电动飞机和电力推进这两个同时发生的技术趋势。然后,我们描述和评估电力推进领域研究工作的现状,考虑通用航空(GA)/休闲飞机、城市空中出租车、区域/商务飞机和大型商用飞机的发展。
飞机系统电气化、电力推进研究以及从根本上对电动飞机的资金和商业投入一直呈上升趋势。电气化不仅能够减少排放,还可以释放更节能的飞机以及全新架构和用例的潜力。电气化还可能彻底改变航空航天业的供应基础,对现有供应商构成生存威胁,并为新进入者提供进入市场的机会。在本次 Think:Act 中,罗兰贝格评估了电动飞机的前景和可能的应用,以及在发生任何重大变化之前需要克服的许多技术和监管障碍。我们首先讨论电动飞机的历史以及更多电动飞机和电力推进这两个同时发生的技术趋势。然后,我们描述和评估电力推进领域研究工作的现状,考虑通用航空(GA)/休闲飞机、城市空中出租车、区域/商务飞机和大型商用飞机的发展。