1。简介粉红色镉(CD-chal)量子点(QD)是自1990年代初以来一直在合成和探索的最早的量子点[1,2]。它们是具有荧光性能的半导体材料,具有独特的光物理和结构特性,例如高量子产率,高光稳定性,单个窄发射带,宽的吸收带,高摩尔灭绝系数,较小的尺寸(2-10 nm),半导体性质,半导体性质和可修饰的表面[1-4]。具有独特的特性,CD-chal QD已被广泛用于许多不同的技术,例如太阳能电池,LED,生物技术,军事和医学[5-11]。由于它们具有出色的光物理特性,因此经常用于LED和太阳能电池应用[8,9],甚至高科技品牌(例如三星)都将QDS调整为其监视器系统[12,13]。
1。简介粉红色镉(CD-chal)量子点(QD)是自1990年代初以来一直在合成和探索的最早的量子点[1,2]。它们是具有荧光性能的半导体材料,具有独特的光物理和结构特性,例如高量子产率,高光稳定性,单个窄发射带,宽的吸收带,高摩尔灭绝系数,较小的尺寸(2-10 nm),半导体性质,半导体性质和可修饰的表面[1-4]。具有独特的特性,CD-chal QD已被广泛用于许多不同的技术,例如太阳能电池,LED,生物技术,军事和医学[5-11]。由于它们具有出色的光物理特性,因此经常用于LED和太阳能电池应用[8,9],甚至高科技品牌(例如三星)都将QDS调整为其监视器系统[12,13]。
摘要:CSPBBR 3量子点(QD)是光电设备的有希望的候选者。用二烷基铵(例如二二二烷基二甲基溴化物溴化物(DDAB))取代油酸(OA)和油胺(OLA)盖剂,表明外部量子效率(EQE)的含量增加了0.19%(OA/OLA)至13.4%(dd.4%)。设备的性能显着取决于QD固体中光激发载体的分解长度和迁移率。因此,我们通过构造双尺寸的QD混合物来研究DDAB限制的CSPBBR 3 QD固体中的电荷载体传输动力学。可以通过定量改变两个尺寸的QD之间的比率来监测荷兰载波的差异,从而改变了每个QD群集中载体的平均自由路径。从超快瞬态吸收光谱获得的QD固体的激发态动力学表明,由于强量量子的构造,光生的电子和孔很难在小型QD(4 nm)中使用。另一方面,大型QD(10 nm)中的光诱导的电子和孔都将与小型QD插入界面,然后进行重组过程。将载载物的不同研究与混合物中的QD组件上的蒙特卡洛模拟相结合,我们可以在10 nm cspbbr 3 qds中计算出电荷载体的差值长度为〜239±16 nm,以及电子和电子的迁移率,以及2.1(2.1(2.1(0.6))和0.6(0.6)(0.69(±0.6)(0.69)(0.69)(±0.69)(±0.69(±0.6)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±±0.6)(±±0.6)(±±±9)(±±0.6) 分别。这两个参数均表示DDAB限制的QDFIFM中有效的电荷载体传输,这合理化了其LED设备应用程序的完美性能。关键字:超快光谱,扩散长度,cspbbr 3,ddab,量子点光伏,载体传输,电荷转移■简介
我们通过填充液滴蚀刻的纳米霍尔斯,基于嵌入单晶Algasb矩阵中的煤气量点(QD)(QD)展示了一种新的量子限制的半导体材料。液滴介导的生长机制允许形成非经典单QD光源所需的低QD密度。光致发光(PL)实验表明,在电信波长下,燃气QD具有间接的单向频率跨度。这是由于受纳米结构尺寸控制的量子限制的结果,导致导带中γ和L阀的比对。我们表明,在接近1.5μm波长的直接带隙状态下,GASB QD具有I型频带对齐,并且具有狭窄的光谱线的激发量发射,并且由于高材料质量和尺寸均匀性,因此具有狭窄的光谱线和非常低的PL发射不均匀扩展。这些特性在红外量子光学和量子光子整合的应用方面非常有前途。
我们基于时间分辨的光致发光光谱证明了实验结果,以确定INGAAS量子点(QDS)的振荡器强度和内部量子效率(IQE)。使用减少应变层,这些QD可用于制造电信O波段中发出的单光子源。通过确定在QD位置的光密度在QD的位置的变化下,在QD的位置确定辐射和非辐射衰减速率,以评估振荡器的强度和IQE。为此,我们对QD样品进行测量,以实现由受控的湿化学蚀刻过程实现的封顶层的不同厚度。从辐射和非辐射衰减速率的数字建模依赖于上限层厚度,我们确定长波长Ingaas QD的振荡器强度为24.6 6 3.2,高IQE(85 6 10)的高IQE(85 6 10)。
在SI中集成的高质量量子点(QD)的线性阵列是探索量子信息的操纵和传输的理想平台。因此,了解与SI技术兼容的底物的QD自组织机制至关重要。在这里,我们证明了INAS和INGAAS QD的线性阵列的外延生长来自AS 2和裸露和GAAS涂层Si(001)底物的分子束,由高分辨率激光干扰纳米义造影。原子力MI司法检查与高分辨率扫描和透射电子显微镜结合使用,表明,当QDS的生长选择性,横向顺序和尺寸均匀性的提高时,QDS的大小为1 nm thick thick gaas gaas buffer层是在INAS沉积之前种植的。此外,x ga 1-x作为QD的优先成核沿<110>的纳米结构的gaas-on-si(001)底物的面向面向的边缘从Adatom迁移中从(111)迁移到(111)到(001)纳米和湿润层引起的湿润层引起的EDM迁移而产生。 Stranski-Krastanov过渡。这些是相干QD的线性阵列形成的关键要素,它们的形态和结构与GAAS(001)和Si(001)平面表面上的形态和结构不同。
摘要:表面钝化是防止表面氧化和改善纳米晶体量子点 (QD) 发射性能的关键方面。最近的研究表明,表面配体在确定基于 QD 的发光二极管 (QD-LED) 的性能方面起着关键作用。本文研究了 InP/ZnSe/ZnS QD 的封端配体影响 QD-LED 亮度和寿命的潜在机制。电化学结果表明,高发光 InP/ZnSe/ZnS QD 表现出取决于表面配体链长度的调制电荷注入:配体上的短烷基链有利于电荷向 QD 传输。此外,光谱和 XRD 分析之间的相关性表明,配体链的长度可调节配体-配体耦合强度,从而控制 QD 间能量传递动力学。本研究的结果为表面配体在 InP/ZnSe/ZnS QD-LED 应用中的关键作用提供了新的见解。
基于淬灭效果,开发了一种量化槲皮素(QUE)的方法,这种类黄酮对水溶液中3-甲基托托酸(3MPA)CDTE量子点(QDS)的光致发光作用。来自3MPA -CDTE QD的发光(460/527 nm)(估计为1.5×10 -7 mol l -1)产生了在5.0×10 -6和6.0×10 -6和6.0×10 -5 mol l -1之间的发光淬灭信号之间的发光淬灭信号之间的线性关系(r 2 0.990)。在存在其他类黄酮和维生素C的情况下,该方法成功地用于量化Que,检测到3.2×10 -6 mol l -1。10 -5 mol L -1 Que水平的标准偏差为2%。评估了其他类黄酮在QDS发光中的作用,并且在儿茶素和黄酮的情况下未观察到干扰(浓度高达QUE的5倍)。Histeritin,naringenin,kaempferol和Galangin在相同浓度的Que中没有任何干扰。但是,即使在相同浓度的Que中,莫林也会干扰。维生素C的浓度高于Que的10倍的浓度高出10倍。通过提出的方法确定了操纵配方和食物补充胶囊中Que的含量,并将其与HPLC获得的结果进行了比较。最后,使用3MPA-CDTE QDS测定槲皮素,以分析薄层色谱法后黄色和红洋葱提取物,以使Que选择性。
敏捷加密术允许加密核心的资源有效交换,以防基础经典加密算法的安全性受到损害。相反,多功能密码学允许用户切换加密任务,而无需对其内部工作有任何了解。在本文中,我们建议如何通过明确演示两个量子加密协议,量子数字签名(QDS)和量子秘密共享(QSS),在同一硬件发送者和接收机平台上应用这些相关原理。至关重要的是,协议仅在其经典后处理方面有所不同。该系统也适用于量子密钥分布(QKD),并且与已部署的电信基础架构高度兼容,因为它使用标准正交相位偏移键编码和杂化检测。首次修改了QDS协议以允许在接收方进行后选择,从而增强协议性能。加密原语QD和QSS本质上是多方的,我们证明它们不仅是在任务内部的播放器不诚实的情况下,而且还允许(外部)窃听量子通道时的安全。在我们的第一次原则证明中,敏捷和多功能量子通信系统时,量子状态以GHz速率分布。在2公里的光纤链接上,可以使用我们的QDS协议在不到0.05毫秒的情况下牢固地签署1位消息,并且在20公里的光纤链接上不到0.2 s。据我们所知,这也标志着连续变量直接QSS协议的首次演示。