7月22日至24日,2024年伯灵顿,佛蒙特州7:30 - 8:15 AM注册和欧陆式早餐早餐8:15 - 8:30 AM欢迎和开幕词emerald III Ballroom ballroom trisha ballroom trisha trisha trisha trisha trisha trisha trisha trisha trisha trisha在审判中,哈佛大学的弗雷德里克·R·比伯(Frederick R. deconvolution using microhaplotypes Sarah Cavanaugh, Bode Technology 11:30 – 12:00 pm Determining kinship in missing persons and disaster victim identification cases with an end-to-end workflow Laurence Devesse, QIAGEN 12:00 – 1:00 pm Lunch The Atrium Moderator: Michael Marciano Emerald III Ballroom 1:00 – 1:30 pm Engineering a better carrion fly.遗传修饰是为法医昆虫学验证实验制造工具。杰弗里·威尔斯(Jeffrey Wells),佛罗里达州国际大学1:30 - 2:00 pm从皮质骨切片中的成骨细胞进行化学切除,从皮质骨切片中通过完整的胶原酶消化,弗吉尼亚州英联邦大学2:00 - 2:30 PM当前的实践和开发法医学血清学的方法Sarah Sarah Seashols-Williams,弗吉尼亚州弗吉尼亚州弗吉尼亚州弗吉尼亚州
微生物来自油储层的微生物通过生物降解或酸化等过程形成石油成分。此类过程在经济上被认为是有害的,可能会构成健康和安全危害。因此,了解储层微生物群落及其代谢能力的组成至关重要。然而,这种分析受到困难,从而从诸如原油等复杂流体中提取DNA。在这里,我们提出了一种新型的DNA提取方法,该方法具有广泛的美国石油研究所(API)重力(密度)范围。我们研究了从具有不同溶剂和表面活性剂的油中提取细胞的能力,后者均非离子和离子。此外,我们评估了三种DNA提取方法。总体而言,使用异辛烷作为溶剂来实现最佳的DNA产量和16S rRNA读数的数量最高,然后使用十二烷基硫酸钠和使用Powersoil Pro Kit(Qiagen)进行了离子表面活性剂处理。然后将最终方法应用于在无菌条件下收集的油库中的各种油。尽管预期的低细胞密度为10 1 - 10 3个细胞/ml,但新方法仍产生可靠的结果,平均16S rRNA测序读取为41431(±8860)的顺序。嗜热,嗜热和厌氧分类群,最有可能是油储层的土著。API重力和DNA产量却没有显示出相关性。
牛皮癣是一种以快速皮肤细胞生长为标志的慢性皮肤疾病,导致厚实,红色,鳞片状斑块。microRNA是小的非编码RNA分子,在转录后基因调节中起着至关重要的作用。这项研究研究了牛皮癣EV中的miR-16-5p,miR-21-5p和miR-155-5p的表达,并评估其生物标志物的潜力,通过生物信息学探索相关的靶基因和途径。一项横断面和病例对照研究包括40名牛皮癣患者,并在EDTA管中收集了血液样本。使用Qiagen试剂盒分离出来自细胞外囊泡的RNA,并通过RT-QPCR定量miRNA。生物信息学分析使用MIRDB和TargetScan等数据库预测靶基因。处理来自GEO的基因表达数据,并鉴定出差异表达的基因。这项研究评估了牛皮癣患者循环囊泡与对照组的miR-16-5p,miR-21-5p和miR-155-5p的表达,发现患者的水平明显较低。ROC分析证实了它们的诊断潜力。miR-16-5p与牛皮癣面积严重程度指数(PASI)的正相关表明严重性标记潜力。生物信息学确定了378个常见失调基因,揭示了牛皮癣中的关键途径和基因相互作用。热图证实了miRNA介导的疾病中的基因抑制。这项研究将miR-16-5p,miR-21-5p和miR-155-5p确定为潜在的牛皮癣生物标志物,此外还发现了牛皮癣病理生理学涉及的重要基因相互作用和途径。
套件,例如Qiagen的Dneasy血液和组织套件,如《环境DNA社会手册》中列出。⚫多合一包:该套件包括所有必要的试剂和设备,使您可以立即开始采样而无需组装。QuickConc™QuickConc™的好处有望显着提高EDNA分析的效率,从而带来以下好处:⚫更有效的生物多样性监测:可以在更少的时间内分析更多样本。⚫促进保护工作:快速数据采集可以实施更及时的保护措施。⚫促进EDNA分析:预计用户友好的操作将鼓励更多的研究人员和机构进行环境DNA分析。如果您对产品还有其他任何疑问或需要更多信息,请随时与我们联系以详细说明。(https://advansentinel.com/en/contact)销售细节您可以在以下网站上购买QuickConc™(每1盒20次测试):https://www.amazon.co.co.jp/dp/dp/dp/dp/dp/dp/b0d91vymk3 this产品目前仅在日本出售,但在日本上可用,但我们可以在日本出售。您可以使用套件中包含的QR码访问的免费示例管理应用程序来轻松管理采样位置和元数据。该应用程序支持CSV导出和离线操作。如果您有兴趣使用它,请随时与我们联系。(请注意,此新闻稿基于具有(https://advansentinel.com/en/contact)附加信息与该产品的开发有关的论文是与科比大学人类发展与环境研究生院合作编写的,目前可作为预先打印。
JúlioCézarRosade Souza Junior 1,Karine Terra de Souza 1,Glauber Monteiro Dias 1。脱氧核糖核酸(DNA)酸是用于遗传研究的原材料,因此,开发了实验室技术以获得足够的浓度和完整性。从不同方法中进行DNA的评估对于选择要执行的分析的最合适的选项很重要。 分子分析中使用的技术需要质量高的核酸,即未质量,具有良好的纯度(没有污染物,例如糖,蛋白质和苯酚),并且以适当的浓度浓度。 商业套件寻求以处理时间和较小样品的输入提供此类特征,但是高成本是一个限制。 因此,这项工作的目的是比较与样品的浓度和完整性有关的两种DNA提取方法。 从参与研究项目的44个人的外周血样本中提取 DNA。 将血液放在带有EDTA的收集管中。 所评估的提取方法是盐盐法和“ Dneasy血液与组织”试剂盒(Cat 69504,Qiagen)。 通过分光光度计测量纳米型1000。 “ Dneasy血液与组织”试剂盒提取的样品的平均浓度为20.38±8.03 ng/µl(260/280 = 1.78±0.09和260/230 = 3.72±5.4),产率为15 ng/l llood。 两种方法都产生了具有OD260/280〜1.8的高纯度DNA样品。从不同方法中进行DNA的评估对于选择要执行的分析的最合适的选项很重要。分子分析中使用的技术需要质量高的核酸,即未质量,具有良好的纯度(没有污染物,例如糖,蛋白质和苯酚),并且以适当的浓度浓度。商业套件寻求以处理时间和较小样品的输入提供此类特征,但是高成本是一个限制。因此,这项工作的目的是比较与样品的浓度和完整性有关的两种DNA提取方法。DNA。将血液放在带有EDTA的收集管中。所评估的提取方法是盐盐法和“ Dneasy血液与组织”试剂盒(Cat 69504,Qiagen)。通过分光光度计测量纳米型1000。“ Dneasy血液与组织”试剂盒提取的样品的平均浓度为20.38±8.03 ng/µl(260/280 = 1.78±0.09和260/230 = 3.72±5.4),产率为15 ng/l llood。两种方法都产生了具有OD260/280〜1.8的高纯度DNA样品。通过人类方法提取的样品(盐盐)的平均浓度为246.9±222.6 ng/µl(260/280 = 1.82±0.050和260/230 = 2.01±0.43),产率为24 ng血液DNA/l。正如预期的那样,内部方法的产量高于套件,成本较短,时间较长(约24h)。商业套件的优点是快速处理时间和减少样品输入数量。由于一些血液样本显示了收集管中的凝块,因此与内部提取的标准偏差很高,这影响了提取性能。因此,可以得出结论,腌制技术简单,高效且成本较低,用于人类血液样本DNA提取,而通过“ Dneasy Blood&Tissue“ kit”执行的方法,在较短的时间执行了更长的成本。
小鼠免疫系统的microRNA表达和调节元素活性图集Samuel A Rose 1,2,Aleksandra Wroblewska 1,2,Maxime Dhainaut 1,Hideyuki Yoshida 3,Hideyuki Yoshida 3,Jonathan M Shaffer 4,Anela Bektesevic 1,2,Benjamin benjamin benjamin ben-Zvi 1,2,2,和6.2 Bingfei Yu 7,Janice Arakawa-Hoyt 8,Yonit Lavin 1,Miriam Merad 1,9,Jason Buenrostro 10,11,Brian D Brown 1,2;免疫基因组联盟。1纽约州西奈山的伊坎医学院,纽约州伊坎医学院,纽约州2遗传学和基因组科学系,纽约州西奈山伊坎医学院,纽约州纽约州3 YCI免疫转录学实验室Riken Medical Sciences,Kanagawa,Kanagawa,Patherick of Patherick,MA,弗雷德,弗雷德,弗里克,弗里卡瓦,MA MA 6 MA 6 MA 6 MA 6,免疫学,免疫学和过敏,Brigham and Hospital,波士顿,马萨诸塞州波士顿,加利福尼亚大学,加利福尼亚大学,圣地亚哥分校,圣地亚哥分校,加利福尼亚州La Jolla,加利福尼亚州8,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,旧金山,旧金山,旧金山,旧金山,纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市。哈佛大学,美国马萨诸塞州剑桥11干细胞和再生生物学系,哈佛大学,马萨诸塞州剑桥,美国,应介绍给B.D.B.(brian.brown@mssm.edu)Brian D. Brown,Sinai Mount Sinai医疗中心博士学位医学院1470 Madison Ave.纽约,纽约10029电话: +001-212-824-8425
s2是从山的Ney Springs中分离出来的Shasta,加利福尼亚州,在最小培养基板上,其中包含20 mM多硫化物和10毫米乙酸盐(6)。S2在含有20 mm硫代硫酸盐和10 mm乙酸盐的液体最小培养基中进行有氧培养。详细的媒体说明可在此处找到:dx.doi.org/10.17504/protocols.io.bqjgmujw。S2在室温下孵育5天,以实现由先前的生长曲线确定的近似最大浊度(6)。DNA,并使用量子荧光计(美国Thermofisher Scientific,USA)进行定量。所有测序均由单个DNA准备。纳米孔库在高智能模式(280 bp/s)下使用R10.4.4的流动池(FLO-MIN114)用天然条形码24 V14试剂盒(牛津纳米孔技术,英国牛津,英国)进行测序。用孔雀鱼V.6.4.6进行,删除了质量分数<7的读数(7)。 在Seqcenter LLC(美国匹兹堡,美国)进行了 Illumina库准备和测序。 简要地,使用Illumina DNA准备套件制备库,并用10 bp独特的双指数进行条形码,并在Illumina Novaseq(2×150个测序)上进行测序。 使用BCL-Convert(v.4.0.3)进行反复式,质量控制和适配器修剪。 纳米孔序列> 2,000 bp用菲尔隆(V.0.2.1)(8)过滤质量,并去除了最差的10%的读取碱基。 过滤的长读数与Flye组装(v.2.9.1)(9)。 进行了四轮抛光。 质量评估和基因组统计数据,删除了质量分数<7的读数(7)。Illumina库准备和测序。简要地,使用Illumina DNA准备套件制备库,并用10 bp独特的双指数进行条形码,并在Illumina Novaseq(2×150个测序)上进行测序。使用BCL-Convert(v.4.0.3)进行反复式,质量控制和适配器修剪。纳米孔序列> 2,000 bp用菲尔隆(V.0.2.1)(8)过滤质量,并去除了最差的10%的读取碱基。过滤的长读数与Flye组装(v.2.9.1)(9)。进行了四轮抛光。质量评估和基因组统计数据Illumina读取的质量是用FastQC(v.0.12.1)(10)过滤的,所有读取的质量得分> Q30。简短的读数与Burrows -wheeler对准器(V.0.7.17)(11)对齐,并用Pilon(V.1.24,-fix all)(12)抛光组件。
“ Cantidatus Phytoplasma Fraxini”的Ashy1菌株起源于伊萨卡(美国纽约,美国纽约),并于白灰(Fraxinus Americana),并被转移到Catharanthus Roseus(5)。使用Dneasy血液和组织试剂盒(Qiagen,Hilden,Germany)制备了由感染的玫瑰花芽芽孢杆菌和叶子材料制备的测序模板。使用SMRTBELL PREP KIT 3.0(美国加利福尼亚州PACBIO)的SMRTBELL PREP KIT 3.0(美国)而没有其他DNA片段化制备了用于单分子实时(SMRT)的高保真库。在Max Planck Genome-Centre(德国科隆)的续集IIE设备(PACBIO)上对片段文库进行了测序,其结合KIT 2.0(PACBIO)和续集II测序套件2.0(PACBIO)。通过使用BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)和一个数据核定的数据,通过BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)v.6.18.2(6.18.2(6.18.2)(6)(6)(6.6.18.2(6)的候选,分类构造分类为“ candidatus phyto plasma”属,其中11,518个读取(5834中的N 50)被分配给“念珠菌Phyto等离子体”属。 GenBank的Tus Phytoplasma”和Catharanthus Roseus(登记:2024年1月)。 使用PACBIO-HIFI选项和估计的基因组大小为600 kb,将其余的读数与CANU v2.2(7)组装在一起。 实现了一个连续的圆形序列,具有67.17倍的覆盖率。 通过爆炸分析确认了> 10 kb的序列重叠。 随后,使用Artemis V18.2.0(8)手动删除序列重叠。 在Rast V2.0(9)中进行了完整染色体的注释,然后在Artemis v18.2.0(8)中进行手动策划,DNAA将DNAA设置为染色体的第一个基因。 未发现质粒。通过BLAST+ v2.2.2.9,MetAgenome Analyze(Megan)v.6.18.2(6.18.2(6.18.2)(6)(6)(6.6.18.2(6)的候选,分类构造分类为“ candidatus phyto plasma”属,其中11,518个读取(5834中的N 50)被分配给“念珠菌Phyto等离子体”属。 GenBank的Tus Phytoplasma”和Catharanthus Roseus(登记:2024年1月)。使用PACBIO-HIFI选项和估计的基因组大小为600 kb,将其余的读数与CANU v2.2(7)组装在一起。实现了一个连续的圆形序列,具有67.17倍的覆盖率。通过爆炸分析确认了> 10 kb的序列重叠。随后,使用Artemis V18.2.0(8)手动删除序列重叠。在Rast V2.0(9)中进行了完整染色体的注释,然后在Artemis v18.2.0(8)中进行手动策划,DNAA将DNAA设置为染色体的第一个基因。未发现质粒。使用BUSCO的151个单拷贝直系同源物(94%)的比较支持了注释的完整性(10)。在染色体组装中未考虑的读数对额外的分类套筒进行了进一步的分类,并筛选了ASHY1的肉体外DNA。默认参数用于所有软件,除非另有说明。
补充方法 DNA 分离 使用自动 DNA 提取仪按照其协议(chemagic MSM I,PerkinElmer,美国马萨诸塞州沃尔瑟姆)从血液样本中分离 DNA。 使用试剂盒“EZ1&2 DNA Tissue”(Qiagen,德国希尔登)按照协议使用自动 DNA 提取仪 EZ1 Advanced XL(Qiagen)从羊膜细胞和绒毛中分离 DNA。 染色体微阵列(CMA) 使用 SureTaq DNA 标记试剂盒(Agilent,美国加利福尼亚州圣克拉拉)标记 DNA,并根据制造商的说明在 GenetiSure Cyto 4x180K CGH 微阵列(Agilent)上进行杂交。使用 InnoScan 910 AL 扫描仪(Innopsys,Carbonne,法国)扫描载玻片,并使用分析程序 Mapix(Innopsys)和 CytoGenomics 版本 5.1.2.1 和 5.3.0.14(Agilent)进行处理。使用参考基因组 GRCh38 评估数据。染色体分析和荧光原位杂交使用标准方法从肝素血样以及绒毛和羊膜细胞培养物中进行中期制备。简而言之,将来自肝素血样的细胞培养在含有植物血凝素作为有丝分裂原的 LymphoGrow 培养基(CytoGen,Sinn,德国)中,羊膜细胞培养在 Amniogrow plus 培养基(Cytogen,Sinn,德国)中,CVS 细胞培养在 Chang 培养基 D(Fujifilm,Minato,日本)中。固定后,将中期细胞滴到载玻片上,然后在 60 °C 下干燥过夜。使用核型分析系统 Ikaros(MetaSystems,德国阿尔特鲁斯海姆)通过 GTG 显带评估中期染色体的扩散情况。对于 FISH 分析,使用 Empire Genomics(美国纽约州布法罗)的探针 RP11-213E22-green 和 RP11-577D9-orange(7 号染色体)以及 RP11-358H10-green 和 RP11-241M19-orange(16 号染色体)。所有探针均按照制造商的说明使用。使用 Isis 数字成像系统(Metasystem Inc.,德国阿尔特鲁斯海姆)分析图像。 PCR 和测序 在适用的情况下,确认并进一步指定 OGM 分析中的断点,方法是使用 MinION 测序仪(Oxford Nanopore,英国牛津)进行第三代长距离测序,或使用 Hitachi 3500xL 基因分析仪(Thermo Fisher Scientific,美国马萨诸塞州沃尔瑟姆)进行 Sanger 测序。引物是根据 Dremsek et al., 2021 中描述的策略设计的。为了将引物定位得尽可能靠近预期的断点,OGM 数据和 CMA 数据都融入了其设计中。为了分析P1,进行了长距离PCR(连接点B/D*的扩增子:正向引物:5'-ggaggacaattttatcccccaggg-3'和反向引物:5'-gtgagccgtgagtttgccactat-3';连接点D*/B*的扩增子:正向引物:5'-tcgttgacggtgaaatgctacgt-3'和反向引物:5'-gcagataacggagtgaggaaggc-3')。PCR扩增后,使用引物 5' -acagctcactatagcagataggtgt- 3'、5' - ttgcatcaggaacatgtggacct- 3'、5' -ctggtcacaggcgcaaatcaaag- 3'、5' -gtcagcaaaggagagaagcagct- 3' 和 5' - gcaggttggctctttcccaagta- 3' 制备连接点 B/D* 的扩增子(大小为 4 kbp)进行 Sanger 测序。使用引物 5' -agggaaaagagatgtgtaaaatactgt- 3', 5' -agatgaggaagggcatctgac- 3', 5' -tcaagttgtcattgtggtgaatt- 3', 5' - cagatgccagcgctaagacgat- 3', 5' -aggttattacacacccctcct- 3', 5' -tgttcattatcactggccatcaga- 3', 5' -aaggggaaacctcctgctactct- 3', 5' - tgcacccactaacgtgtcatcta- 3', 5' -gggttggttccaagtctttgcta- 3', 5' -gctgaaactggatcccttcctta- 制备连接点 D*/B* 的扩增子(大小为 13 kbp),进行 Sanger 测序。 3'、5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动槽上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。
药物再利用有可能使现有的去风险药物对正在发生的流行病——COVID-19 进行有效干预。截至 2021 年 4 月 4 日,该流行病已感染超过 1.31 亿人,全球有 280 万人死于该疾病。我们使用了一种基于“基因特征”的新型药物重新定位策略,即应用广泛接受的基因排序算法来优先考虑 FDA 批准或正在试验的药物。我们使用 CLC Genomics Workbench 20 (QIAGEN) 挖掘了公开可用的 RNA 测序 (RNA-Seq) 数据,并在对基于严重急性呼吸综合征相关冠状病毒 2 (SARS-CoV-2) 感染原发性人呼吸道上皮细胞的三项独立研究进行荟萃分析后,确定了 283 个差异表达基因 (FDR < 0.05, log2FC > 1)。独创性通路分析 (IPA) 显示,SARS-CoV-2 激活了关键的典型通路和基因网络,这些通路和基因网络错综复杂地调节一般的抗病毒以及特定的炎症通路。从 Metacore 和 IPA 中提取的药物数据库确定了 15 个药物靶点(包含有关 COVID-19 发病机制的信息),其中 46 种现有药物可作为 COVID-19 治疗的潜在新型候选药物。我们发现 35 种抑制靶点(ALPL、CXCL8 和 IL6)的新型药物已经在 COVID-19 的临床试验中。此外,我们发现 6 种现有药物针对 4 个潜在的抗 COVID-19 靶点(CCL20、CSF3、CXCL1、CXCL10),这些靶点可能具有新的抗 COVID-19 适应症。最后,根据基因排名算法对这些药物靶点进行计算优先排序,结果显示 CXCL10 是与 2 种现有药物最常见且最强的候选药物。此外,283 种 SARS-CoV- 2 相关蛋白列表不仅可以作为抗 COVID-19 靶点,而且对于 COVID-19 生物标志物的开发也很有用。
