在两个空间维度中开发了非Fermi液体(NFL)的预测理论仍然是现代冷凝物理物理学的关键挑战。在真实材料的水平上,它可以洞悉诸如高-T_C超导性等紧迫问题,而从抽象的角度来看,它是对较低的2-D临界值的范式的范式,这是由于与有限密度的Fermions相互作用而引起的2-D关键性。功能性重新归一化组特别适合研究NFL,因为它可以处理其固有的强相互作用和非分析的算子[1,2] - 但是,由于准粒子图片的细分,人们对低能量现场理论的形式鲜为人知,而大多数理论方法的形式缺乏预测能力。我们试图通过使用已知的确切身份(例如由对称性的身份)来限制建模来解决此问题。具体而言,我们非扰动地研究了与2-D Fermi-surface相互作用的U(1)仪表的问题;早就知道,磁性矢量电势不会被颗粒孔连续体筛选,因此诱导了关键性[3,4]。我们首先展示了调节器与U(1)对称性的相互作用如何 - 特别是为了正确捕获Landau阻尼,我们需要一个软频率调节器来构成费米子,这破坏了仪表对称性并导致修改后的病房身份。这些身份虽然不及标准病房身份,但仍然提供耦合之间的确切关系并限制流量。[1] S. A. Maier和P. Strack,物理。修订版mod。物理。reizer,物理。我们讨论了该模型托管的NFL固定点,并演示了修改后的病房身份的合并如何影响其特性。我们对低能量物理诱导的UV-IR混合进行了一些评论,并通过规格对称性诱导的uv-ir混合,以及我们的结果对非Fermi液体的预测建模的含义。b 93,165114(2016)[2]84,299(2012)[3] M. Yu。 修订版 b 40,11571(1989)[4] S. Chakravarty,R。E。Norton和O. F.Syljuåsen,物理学。 修订版 Lett。 74,1423(1995)84,299(2012)[3] M. Yu。修订版b 40,11571(1989)[4] S. Chakravarty,R。E。Norton和O. F.Syljuåsen,物理学。修订版Lett。 74,1423(1995)Lett。74,1423(1995)
在本文中,我们为基于空腔光学原理的原子力显微镜提供了力传感器。我们解释了力传感器的功能,设计,工具和表征。力传感器的机械部分由一个非常细的尖端组成。在悬臂底座附近是一个LC电路,其共振频率在4 - 5 GHz范围内。电感器由超导蜿蜒的纳米线组成,该纳米线在紧张时会改变其电感。因此,可以通过测量LC电路的谐振频率如何变化来检测到可以检测到的瓷砖的机械运动。机械运动产生了微波频谱中的边带。一种检测方法是基于由两个微波色调驱动的电路,而悬臂则由安装在传感器附近的压电振荡器附近靠近其质量共振。测量信号的幅度取决于悬臂运动和微波色调的相位差。制造中的关键步骤包括释放悬臂的释放,通过将基板从前侧和后侧蚀刻出来,以及在悬臂的自由端上沉积尖端。制造是在整个半导体晶圆上进行的,并具有高产量。在几毫升的温度下,以几个赫兹的顺序测量了光力耦合强度G 0。然而,由于存在非热波动力,因此无法对悬臂与LC电路的共振频率移动的耦合恒定机械运动进行准确的校准。我们还介绍了LC电路中的微波损耗在范围1中的变化。7 - 6 K.我们的电路表现出比热平衡准粒子预期的更高的损失,我们将其归因于电路介电。准粒子损失设定了我们电路可以达到的质量因素的上限,而不管拓扑是什么。此外,LC电路在电流和动力学之间表现出非线性关系,从而实现了机械边带的参数扩增。因此,提出的力传感器将力传感器(悬臂),检测器(LC电路)和参数信号放大器(通过LC电路的非线性)集成在一个和同一组件中。
非阿贝尔拓扑态是量子物质最显著的形式之一。这些系统中准粒子激发的交换以简并多体态空间中的非交换幺正变换为特征,即这些准粒子具有非阿贝尔编织统计 [ 1 , 2 ]。理论上预测非阿贝尔态可以描述某些分数量子霍尔 (FQH) 态 [ 3 – 6 ]。Kitaev 的蜂窝自旋液体模型 [ 7 ] 是另一个例子;它在磁场中表现出非阿贝尔相,激发具有 Ising-anyon 统计。实现物质非阿贝尔拓扑态的更一般系统类是 Kitaev 的精确可解量子双模型 [ 8 ],其中特定状态由选择链接(或规范)自由度取值的非阿贝尔群决定。在实验系统中实现量子双模型的一个障碍是,它们以群元素表示的自由度之间的多体相互作用来写,而不是物理自由度,如自旋或电荷。要通过实验实现量子双模型,需要设计具有一体和两体相互作用的母哈密顿量。参考文献 [ 9 , 10 ] 和 [ 11 ] 在这方面做出了显著的努力。参考文献 [ 9 , 10 ] 的量子双实现中的局域规范对称性是涌现的,仅在理论的低能部分活跃(因此是微扰的)。另一方面,在参考文献 [ 11 ] 中,局域规范对称性是精确的,但不清楚哈密顿量是否像在参考文献 [ 9 ] 中那样在物理上可实现,其中提出了使用约瑟夫森结阵列的物理实现。本文的目标是开发一个框架来填补这两种方法的空白:我们设计一个具有精确局部非阿贝尔规范对称性的物理哈密顿量,仅使用可以在物理系统(如超导量子电路)中实现的 1 体和 2 体相互作用。该计划的关键在于将组合规范对称性 [ 12 ](请参阅参考文献 [ 13 ],其中深入介绍了阿贝尔理论的对称性原理,并附带了示例的分步构建)扩展为非阿贝尔理论。规范对称性内置于微观哈密顿量中,因此是精确的,而不是仅在低能量极限下出现。规范对称性在现实哈密顿量中是精确的,这扩展了拓扑相可能稳定的参数范围,从而提供了一种摆脱可达到能隙大小限制的方法。此外,该模型具有铁磁和反铁磁 ZZ 相互作用,以及纵向和横向场。因此,自旋模型是自旋哈密顿量的明确实现,不存在符号问题,实现了非阿贝尔拓扑相。我们重点研究蜂巢格子上链接变量取四元数群 Q 8 内的值的量子双元组。我们用自旋-1/2 自由度表示 8 个四元数变量( ± 1、± i、± j 和 ± k)。我们将在蜂巢格子的每个链接中使用 4 个“规范”自旋,从而定义一个 16 维希尔伯特空间,我们将其分成偶数和奇数宇称态两组,并使用 8 个偶数宇称态来表示 8 个四元数。该构造使用链接上的“物质”自旋来分裂偶数和奇数宇称态,并在位置上强制三个四元数变量相乘为恒等式(“零通量”条件)。最后,我们给出具有相同非阿贝尔组合规范对称性的超导量子电路。在超导导线很小的极限情况下,电压偏置经过调整,使得每根导线中都倾向于两个近乎简并的电荷态,系统将成为文献 [ 14 ] 中引入的 WXY 模型的非阿贝尔推广。在这种情况下,问题中剩余的能量尺度是约瑟夫森耦合,如果系统(具有组合规范对称性)有间隙,则非微扰间隙必然是这个尺度的数量级。
y。HE,Y. Yin,M。Zech,A。Soumyanarayanan,M.M。 yee,T.L。 Williams,M.C。 Boyer,K。Chatterjee,W.D。 Wise,I。Zeljkovic,T。Kondo,T。Takeuchi,H。Ikuta,P。Sirpark,R.S。 Markiewicz,A。Bansil,E.W。 Hudson,J.E。 Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y. He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W. Hudson,J.E。 物理。 Lett。 96,213106(2010)(链接)Jeehoon Kim,Changhyun Ko,Alex Frenzel,Shriram Ramanathan,Jennifer。 修订版 Lett。 物理。 Lett。HE,Y. Yin,M。Zech,A。Soumyanarayanan,M.M。yee,T.L。Williams,M.C。 Boyer,K。Chatterjee,W.D。 Wise,I。Zeljkovic,T。Kondo,T。Takeuchi,H。Ikuta,P。Sirpark,R.S。 Markiewicz,A。Bansil,E.W。 Hudson,J.E。 Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y. He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Williams,M.C。Boyer,K。Chatterjee,W.D。Wise,I。Zeljkovic,T。Kondo,T。Takeuchi,H。Ikuta,P。Sirpark,R.S。 Markiewicz,A。Bansil,E.W。 Hudson,J.E。 Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y. He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Wise,I。Zeljkovic,T。Kondo,T。Takeuchi,H。Ikuta,P。Sirpark,R.S。Markiewicz,A。Bansil,E.W。Hudson,J.E。 Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y. He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Hudson,J.E。Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y.He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.He,M。Letacon,I。Elfimov,J.E。Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Hoffman,B。Keimer,G.A。Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。(链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E.Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Main,T.L。Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Hudson,J.E。 物理。 Lett。 96,213106(2010)(链接)Jeehoon Kim,Changhyun Ko,Alex Frenzel,Shriram Ramanathan,Jennifer。 修订版 Lett。 物理。 Lett。Hudson,J.E。物理。Lett。 96,213106(2010)(链接)Jeehoon Kim,Changhyun Ko,Alex Frenzel,Shriram Ramanathan,Jennifer。 修订版 Lett。 物理。 Lett。Lett。96,213106(2010)(链接)Jeehoon Kim,Changhyun Ko,Alex Frenzel,Shriram Ramanathan,Jennifer。修订版Lett。 物理。 Lett。Lett。物理。Lett。Lett。Hoffman•“对基于Fe的超导体的光谱扫描隧穿显微镜见解”有关物理进展的报告74,124513(2011)(Link)Jennifer E. Hoffman•jennifer E. Hoffman•“纳米级成像和室温下Vo 2中电阻切换中电阻切换的控制””。E. Hoffman•“超导体BAFE 1.8 CO 0.2 AS 2”的扫描隧道光谱和涡旋成像。102,097002(2009)(链接) E. Hoffman,N。C. Koshnick,E。Zeldov,D。A. Bonn,R。Liang,W。N. Hardy,K。A. Moler•“超导体中单个涡流的受控操纵” Appl。93,172514(2008)(链接)E。W. J. Straver,J。E. Hoffman,J。M. Auslaender,D。Rugar,K。A. Moler•“将原子量表电子现象与Bi 2 Sr 2 Sr 2 Sr 2 Sr 2 Sr 2 Cacu 2 Cacu 2 o 8+D”+d“自然422,592-592-592-59(2003)的原子量表电子现象与类似波的Quasi-particle相关联(2003) Simmonds,J。E. Hoffman,D.-H。 Lee,J。Orenstein,H。Eisaki,S。Uchida,J。C. Davis•“ Imaging Quasiparticle干扰BI 2 SR 2 SR 2 CACU 2 CACU 2 O 8+D” Science 297,1148-1151(2002)(Link)(Link) Lee,K。M. Lang,H。Eisaki,S。Uchida,J.C。Davis•“ Bi 2 Sr 2 Sr 2 Sr 2 Cacu 2 Cacu 2 O 8+D” Science 295,466-469(466-469(2002)(2002)(链接)J.E。Hoffman,E。W. Hudson,K。Mards, Eisaki,S。Uchida,J。C. Davis•“成像不足的BI 2 Sr 2 Sr 2 Sr 2 Cacu 2 o 8+d” Nature 415,412-416(2002)(Link)(Link)K。M. Lang,V。Madhavan,V。Madhavan,J。E. Hoffman,J。Hoffman,E。W. Hudson,H.Eissi,S。ucaki,H。ucaki,S。ucaki,S。ucaki,S。ucaki,H。eisse<。
物质的三个状态是固体,液体和气体。- **固体**:在这种状态下,分子紧密地包装在一起,几乎没有移动的自由。这会导致刚性结构保持其形状和体积,无论外部压力或温度变化如何。固体的一个例子是冰,在标准大气压力下0°C以上加热时,它仅在水中融化。- **液体**:在液态下,分子靠近,但具有足够的能量可以自由移动。这种柔韧性允许液体在保持恒定体积的同时采用其容器的形状。液体的一个例子是水,它可以以低于0°C的冰或100°C以上的蒸汽存在。- **气**:在气态状态下,分子具有足够的能量,可以自由和快速移动任何方向。他们不会相互互动,这意味着气体往往会扩展以填充容器,同时保持其体积和形状。气体的一个例子是氧气,随着温度的降低,它变得更加致密,并且能够散布得较低。由于其分子之间的相互作用,每个物质都表现出独特的特性。这些分子的能级确定物质在给定的温度和压力下是否保持固体,液体或气态状态。物质具有四个主要状态:固体,液体,气体和血浆,但我们将重点放在前三个。固体具有确定的形状和体积,颗粒紧密堆积在一起。这些现象是在凝结物理学中研究的。液体具有其容器的形状,具有确定的体积,颗粒自由移动但仍然相互作用。气体还具有其容器的形状,既没有明确的形状也不具有确定的体积,并且粒子高度可移动,彼此弱吸引。在低温下,固体材料中的电子可以分为不同的阶段,包括具有零电阻的超导状态。磁性状态,例如铁磁性和抗铁磁性,也可以视为在特定模式中旋转对齐的物质阶段。在恒星或早期宇宙中发现的极端条件下,原子可以分解成其组成部分,从而导致物质或夸克物质,这是在高能量物理学中研究的。对20世纪物质特性的理解导致识别了许多物质状态,包括一些值得注意的例子。固体在没有容器的情况下表现出明确的形状和体积,而无定形固体缺乏远距离顺序。晶体固体的原子有常规图案,准晶体显示长期顺序,但没有重复模式。多态材料可以存在于不同的结构阶段,这些阶段被认为是物质的独立状态。液体符合其容器,但保持恒定的体积,而气体则膨胀以填充容器。介质状态(例如塑料晶体和液晶)在固体和液体之间表现出中等特性。这些现象在1920年代进行了预测,但直到1995年才观察到。超临界流体结合了液体和气体的特性,存在于高温和压力下,其中液体和气体之间的区别消失了。等离子体与气体不同,其中包含大量的游离电子和对电磁力反应强烈反应的电离原子。Bose-Einstein冷凝物是玻色子占据相同量子状态的相,而费米米奇冷凝物涉及像玻色子一样表现的成对费米子。超导性是一种现象,当某些物质冷却以下时,某些物质表现出零电阻和磁场的驱动。该状态具有各种形式,包括BCS理论所描述的常规超导体和破坏额外对称性的非常规的超导体。此外,铁磁超导体与铁磁性显示出固有的共存,而Charge-4E超导体则提出了一种新的状态,其中电子被绑定为四倍。材料可以根据其费米表面结构和零温度直流电导率进行分组。这导致将分类为金属,绝缘子或两者之间的东西。金属可以进一步归类为费米液体,在费米表面具有明确定义的准粒子状态,也可以将其表现出非常规性的非纤维化液体。绝缘子以不同的形式出现,例如由于带隙,莫特绝缘子引起的带绝缘子,由于电子相互作用而导致的莫特绝缘子,由于无序诱导的干扰效应而引起的安德森绝缘子以及电荷转移的绝缘子,在这些原子之间电子传递。在开始时,目前尚不清楚哪些条件盛行。时间晶体即使在最低的能量状态也表现出运动,而隐藏状态在热平衡中无法实现,但可以通过光激发或其他方式诱导。微相分离涉及统一系统中的不同相,并且链式状态在高温和压力下结合了固体和液体性能。其他现象包括具有自发性应变的铁弹性状态,通过明显质量连接的光子分子,在极高压力下退化的物质以及各种假设状态(如夸克物质,奇怪的物质和颜色玻璃凝)。此外,已经提出了颜色的超导性和夸克 - 格隆血浆,其中提出了夸克可以在gluons海洋中独立移动的夸克。这些阶段通常涉及高能条件,例如在恒星内部或早期宇宙中发现的条件。随着宇宙的扩展,温度和密度降低,引力开始分离,这种现象被称为对称性破裂。