Loading...
机构名称:
¥ 1.0

非阿贝尔拓扑态是量子物质最显著的形式之一。这些系统中准粒子激发的交换以简并多体态空间中的非交换幺正变换为特征,即这些准粒子具有非阿贝尔编织统计 [ 1 , 2 ]。理论上预测非阿贝尔态可以描述某些分数量子霍尔 (FQH) 态 [ 3 – 6 ]。Kitaev 的蜂窝自旋液体模型 [ 7 ] 是另一个例子;它在磁场中表现出非阿贝尔相,激发具有 Ising-anyon 统计。实现物质非阿贝尔拓扑态的更一般系统类是 Kitaev 的精确可解量子双模型 [ 8 ],其中特定状态由选择链接(或规范)自由度取值的非阿贝尔群决定。在实验系统中实现量子双模型的一个障碍是,它们以群元素表示的自由度之间的多体相互作用来写,而不是物理自由度,如自旋或电荷。要通过实验实现量子双模型,需要设计具有一体和两体相互作用的母哈密顿量。参考文献 [ 9 , 10 ] 和 [ 11 ] 在这方面做出了显著的努力。参考文献 [ 9 , 10 ] 的量子双实现中的局域规范对称性是涌现的,仅在理论的低能部分活跃(因此是微扰的)。另一方面,在参考文献 [ 11 ] 中,局域规范对称性是精确的,但不清楚哈密顿量是否像在参考文献 [ 9 ] 中那样在物理上可实现,其中提出了使用约瑟夫森结阵列的物理实现。本文的目标是开发一个框架来填补这两种方法的空白:我们设计一个具有精确局部非阿贝尔规范对称性的物理哈密顿量,仅使用可以在物理系统(如超导量子电路)中实现的 1 体和 2 体相互作用。该计划的关键在于将组合规范对称性 [ 12 ](请参阅参考文献 [ 13 ],其中深入介绍了阿贝尔理论的对称性原理,并附带了示例的分步构建)扩展为非阿贝尔理论。规范对称性内置于微观哈密顿量中,因此是精确的,而不是仅在低能量极限下出现。规范对称性在现实哈密顿量中是精确的,这扩展了拓扑相可能稳定的参数范围,从而提供了一种摆脱可达到能隙大小限制的方法。此外,该模型具有铁磁和反铁磁 ZZ 相互作用,以及纵向和横向场。因此,自旋模型是自旋哈密顿量的明确实现,不存在符号问题,实现了非阿贝尔拓扑相。我们重点研究蜂巢格子上链接变量取四元数群 Q 8 内的值的量子双元组。我们用自旋-1/2 自由度表示 8 个四元数变量( ± 1、± i、± j 和 ± k)。我们将在蜂巢格子的每个链接中使用 4 个“规范”自旋,从而定义一个 16 维希尔伯特空间,我们将其分成偶数和奇数宇称态两组,并使用 8 个偶数宇称态来表示 8 个四元数。该构造使用链接上的“物质”自旋来分裂偶数和奇数宇称态,并在位置上强制三个四元数变量相乘为恒等式(“零通量”条件)。最后,我们给出具有相同非阿贝尔组合规范对称性的超导量子电路。在超导导线很小的极限情况下,电压偏置经过调整,使得每根导线中都倾向于两个近乎简并的电荷态,系统将成为文献 [ 14 ] 中引入的 WXY 模型的非阿贝尔推广。在这种情况下,问题中剩余的能量尺度是约瑟夫森耦合,如果系统(具有组合规范对称性)有间隙,则非微扰间隙必然是这个尺度的数量级。

利用组合规范对称性构建非阿贝尔量子自旋液体

利用组合规范对称性构建非阿贝尔量子自旋液体PDF文件第1页

利用组合规范对称性构建非阿贝尔量子自旋液体PDF文件第2页

利用组合规范对称性构建非阿贝尔量子自旋液体PDF文件第3页

利用组合规范对称性构建非阿贝尔量子自旋液体PDF文件第4页

利用组合规范对称性构建非阿贝尔量子自旋液体PDF文件第5页

相关文件推荐

2023 年
¥4.0
2020 年
¥1.0
2023 年
¥3.0
2023 年
¥14.0
2024 年
¥4.0