在无线传感器网络中,多级量化是必要的,以便在最小化传感器功耗和最大化融合中心 (FC) 的检测性能之间找到一个折衷点。以前的方法一直在这种量化中使用距离度量,例如 J 散度和 Bhattacharyya 距离。这项工作提出了一种不同的方法,该方法基于两种假设下的传感器输出的最大平均熵,并在基于 Neyman-Pearson 标准的分布式检测方案中利用该方法检测点源。当传感器输出在 FC 上无误差可用时,以及当使用非相干 M 元频移键控通信通过瑞利衰落信道传输基于 MAE 的多级量化传感器输出时,都对所提出的最大平均熵 (MAE) 方法在量化传感器输出方面的接收器操作特性进行了评估。模拟研究表明,在无误差融合和已纳入无线信道影响的情况下,MAE 都是成功的。正如预期的那样,性能随着量化级别的提高而提高,并且六级量化接近非量化数据传输的性能。
到 2017 年底,欧洲航天局 (ESA) 将发射大气激光多普勒仪器 (ALADIN),这是一种在 355 nm 下工作的直接检测多普勒风激光雷达。ALADIN 机载演示器 A2D 是使用真实大气信号验证和优化 ALADIN 硬件和数据处理器进行风检索的重要工具。为了能够验证和测试 ALADIN 的气溶胶检索算法,需要一种从 A2D 检索大气后向散射和消光轮廓的算法。A2D 采用直接检测方案,使用双法布里-珀罗干涉仪测量分子瑞利信号,使用菲索干涉仪测量气溶胶米氏回波。信号由累积电荷耦合器件 (ACCD) 捕获。这些规范使得信号预处理中的不同步骤成为必要。本文描述了从 A2D 原始信号中检索气溶胶光学产品(即粒子后向散射系数 β p 、粒子消光系数 α p 和激光雷达比 S p )所需的步骤。
摘要:重力波(GWS)是子午线和上层平流层中子午倾覆循环的关键驱动因素之一。他们在气候模型中的表示遭受了不足的分辨率和对其参数化的有限约束。这种掩盖了对气候变化中中大气环流变化的评估。This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometer- scale global forecast model (1.4 km ECMWF IFS), ground-based Rayleigh lidar (CORAL) observations, modern reanaly- sis (ERA5), to a coarse-resolution climate model (EMAC).与ERE5相比,发现Zonal GW动量(GWMF)的分辨垂直浮标(GWMF)的强度至少为2-2.5。与IFS中解决的GWMF相比,ERA5和EMAC的选址继续产生60 8 s的过度GWMF极点,从而在已解决的GWMF和参数化的GWMF之间产生明显的差异。在IFS和ERA5中对GW Pro Files的类似验证验证了相似的波结构。,即使在; 1公里的分辨率,IFS中的解析波弱于LIDAR观察到的波。此外,跨数据集的GWMF估计值表明,基于温度的代理基于线性GWS的中频近似,由于简化的GWMF和GW波长估计的数据高估了GWMF。总体而言,该分析为参数化验证提供了GWMF基准,并要求三维GW参数化,更好的上限处理和垂直分辨率随着模型中水平分辨率的增加而增加,以进行更现实的GW分析。
15.补充说明 David Albright,NMDOT 研究局局长;Rais Rizvi,NMDOT 研究工程师;16.摘要 本研究的目的是证明公路桥梁无损检测和监测技术的有效性和可行性。工作包括光纤传感器开发,其中包括光子学仪器、光纤拼接和修复设备以及合格的光纤技术人员,以便准备和安装光纤传感器网络、评估包括 WIM 在内的商业系统以及根据需要构建原型系统。它还为在现有桥梁和新桥上安装光纤传感器制定了一系列指导方针。这项工作评估了市售软件,用于将桥梁站点的单个数字图像组合成单个全景图像并随后查看它。评估市售的基于 PC 的软件和数字技术,以获取结构的高分辨率图像并将其处理成三维计算机模型,以提供诸如垂直和水平间隙或静载和活载挠度等信息。评估压电换能器产生的高频(>50 kHz)瑞利波超声波的性能,以表征近表面微裂纹。
可调节的谐振峰对于在生物传感,过滤和光学通信中的高精度光子设备是必需的。在这项研究中,我们专注于具有不同时期的双ribbon二维金光栅,并详细检查了不同的光栅时期的瑞利条件,以了解共振波长的激发。我们在不对称的双丝带金光栅上展示了可调节的共振行为,周期为400至600 nm。该结构由二硫化钼(MOS 2)单层上的亚波长金带组成,并由二氧化硅底物支撑。在可见的谐振波长时,对场分布的分析揭示了表面等离子体(SP)激发,并伴随着传播衍射顺序转化为evaneScent的波。当谐振峰出现在透射衍射顺序消失的波长下时,SP会在MOS 2-戈尔德色带界面和传输域内激发。相比之下,通过消失反射衍射顺序,SP在金带空气界面和反射域中激发。了解SP激发波长突出了这些光栅对可调纳米级光子设备的潜力。它们的精确共振控制和简单的制造使其适合可扩展的光学应用。
cai li,1个feng pei,2 na xiao 1和xiao-fei Zeng 1,2,*抽象的空心二氧化硅纳米球(HSNS)由于其低折射率而被广泛用作抗反射涂层。但是,很难使用简单的混合方法将它们合并到光学聚合物矩阵中,以增强可见的传输。瑞利散射是由其较大的粒径和集聚问题引起的,这会使光学聚合物的阴霾和透明度更糟。在此,直径约为20 nm的超小HSN通过反向微乳液方法合成。通过高重力技术在旋转的床反应器(RPB)中实现了扩展制剂,然后通过简单的溶液混合方法制造了透明的聚乙烯醇(PVA)/HSNS纳米复合材料。HSN的内腔大小约为8 nm,折射率为1.342。通过使用不同的表面修饰符,它们可以分别在水和有机溶剂中单分散。制备的PVA/HSNS纳米复合材料具有超高的透明度和低阴霾,因此HSN均匀地分散在PVA矩阵中,而没有任何聚合,这在光学材料和设备中具有很高的应用前景。
声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
摘要 - 大气光散射包含复杂的物理过程,包括各种散射机制和光学参数。应对破译这种现象的计算密集任务所带来的挑战,这项研究引入了有效的实时仿真策略。所提出的方法采用物理驱动的大气建模,利用统一的相位函数模仿瑞利和MIE散射现象。使用射线制定的概念来解决散射积分,将散射积分近似并离散。基于不同光源的特征,确定了准确的射线建设长度,从而简化了光路的计算轨迹。此外,纹理抖动的引入增强了初始采样位置的随机性。阴影地图算法擅长生成阴影映射纹理,从而消除了阴影区域内的光计算的需求,从而减少了样本数量和计算工作负载。最后,颜色合成用于确定在各种雾密度条件下大气的渲染颜色。实验结果表明,与其他先进的光散射渲染方法相比,这种方法可显着提高渲染效率,并实现实时渲染,同时保持逼真的光散射效果。
粒子系统的力学:约束;广义坐标;虚拟工作的虚拟位移和原则; D'Alembert的原则;广义力量;拉格朗日;拉格朗日的运动方程;循环坐标;速度依赖性潜力;科里奥利的力量;能量原理;瑞利的耗散功能。动作积分;汉密尔顿的原则; Lagrange的方程式通过变异方法;汉密尔顿的非全面系统原则;对称特性和保护法; Noether的定理。规范结合坐标和动量; Legendre转型;汉密尔顿;汉密尔顿的方程式来自各种原则; Poincare-Cartan的整体不变;固定行动的原则;费马特的原则;规范转型;生成功能;泊松支架;运动方程;动作角度变量;汉密尔顿 - 雅各比方程;汉密尔顿的主要功能;汉密尔顿的特征功能; liouville的定理。普朗克定律,照片电动效应;玻尔理论,康普顿效应; de Broglie波;波粒二元论;最小不确定性产品;需要新的机制;路径积分;量子力学的基本法律和基础; Schrödinger方程;量子状态,可观察和密度矩阵形式主义的入门概念。
光纤传感在油气井中的应用。光纤传感有可能彻底改变油气行业的油井和油藏监测。光纤传感器的被动特性、安装成本低廉的潜力以及沿光纤整个长度进行密集分布测量的可能性,都为油气行业带来了诸多好处。安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和处理能力(将这些测量结果转化为有价值的信息)是任何传感系统的关键要素。基础由井中的合适光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。低成本、坚固耐用的询问单元是实现基于 FBG 的传感系统成本效益的关键因素之一。本文介绍了用于高温沙漠环境的此类询问单元的成功开发(第 3 章)。这一发展旨在促进低成本商业化实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 (DAS) 是一种完全分布式传感技术,它利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以解释为在整个光纤中实现准麦克风。DAS 近来备受关注,因为它在井下监测(例如压裂监测、流量监测)以及地球物理监测中具有潜在应用。本论文以地球物理应用为重点,描述了合适询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要提高光纤传感电缆对垂直于其轴向方向的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。然而,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,本论文阐述了一种新方法的开发:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保证延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以在井下环境中组合使用。由此产生的大量沿光纤连续的时间和距离测量为石油和天然气行业的稳健井和油藏监测提供了独特的机会。
