简单总结:乳腺癌是女性中最常见的癌症,也是癌症相关死亡的主要原因。尽管有几种治疗方法,但全身化疗仍然是主要选择,尤其是对于晚期乳腺癌的治疗。不幸的是,全身化疗会引起许多副作用和对远端器官的损害,并且需要高剂量的药物才能在肿瘤区域达到治疗浓度。使用纳米系统进行药物输送是一种有希望克服这些缺点的策略。在这项研究中,我们开发了含有化疗药物多西他赛的聚(乳酸-乙醇酸)纳米颗粒 (PLGA-NPs),用环状 RGD 三肽功能化,以允许对乳腺癌中过表达的 α v β 3 整合素进行主动靶向。我们证明 PLGA 在临床前模型中有效地将药物输送到乳腺癌细胞,并且比游离多西他赛更有效地阻止肿瘤进展,同时减少副作用。
警方昨天表示,一名疑似武装分子在印控克什米尔地区发生冲突,被击毙,七名安全部队成员受伤。安全部队赶赴边境村庄,一名男子在随后的枪战中被击毙,警方认为该男子是从巴基斯坦一侧越境而来的。“这似乎是一次新的渗透,一名恐怖分子被击毙,另一名恐怖分子的搜捕仍在继续,”高级警官阿南德·贾恩告诉记者。几个小时后,疑似叛军向以北约 100 公里的地区投掷手榴弹,造成六名士兵和一名警察受伤。警察高级警司 Javaid Iqbal 告诉记者,六名伤者被送往医院接受治疗。“正在森林地区开展搜捕行动,”他补充道。陆军特种部队和警察已经在广阔的森林地区展开搜捕,并公布了嫌疑人素描,并宣布将为提供嫌疑人所在位置的信息的人员悬赏 24,000 美元。
摘要:微凝胶是水的交联聚合物,被广泛用作组织工程和再生医学的脚手架材料中的胶体构建块。微凝胶可以根据其聚合物结构,交联密度和制造方法来控制其刚度,肿胀程度和网格尺寸 - 所有这些都会影响其功能和与环境的相互作用。当前,缺乏对聚合物组成如何影响软微凝胶的内部结构以及该形态如何影响特定生物医学应用的内部结构。在本报告中,我们系统地改变了聚乙烯甘氨酸丙烯酸酯(PEG-AC)前体的结构和摩尔质量,以及它们的浓度和组合,以洞悉影响棒状微凝胶的内部结构的不同参数。我们表征了来自PEG-AC前体产生的散装水凝胶和微凝胶中丙烯酸酯基团在光聚合过程中丙烯酸酯基团的转化。此外,我们研究了细胞 - 微凝胶的相互作用,并且观察到改善的细胞在具有更容易接近的RGD肽的微凝胶上扩散,并且刚度在20 kPa至50 kPa的范围内导致细胞的生长更好。
背景:含有高Z组元素的纳米辐射式感应器已被广泛报道为放射疗法的潜在候选者。但是,特定的调节机制尚不清楚,需要紧急解决生物降解性。方法:我们合成了含丝绸Sericin的纳米组件,pt@bi 2 SE 3 -RGD(PBR)。pbr的抗肿瘤和生物选择效应。使用双侧肿瘤模型评估了PBR的免疫放射治疗作用。结果:将光声成像引导的PBR与放射疗法相结合,提高了抗PD-L1治疗的效率,从而引发了强大的免疫反应。重要的是,含丝丝毒素的PBR可以用酸性pH和过表达的MMP-9对局部细胞内环境反应,并崩溃成BI,SE和散射的PT纳米颗粒(NPS),并最终从体内清除。结果还表明,PBR可能作用于AREG/EGFR/BCL-2途径,从而诱导放射性敏感性凋亡。结论:在这项研究中综合的多功能,可生物限制的PBR纳米组装表现出了放射敏化,与PD-L1免疫阻滞结合使用,可以抑制原发性和远端肿瘤。因此,作为协同放疗和免疫疗法的敏化剂,PBR可能在肿瘤学中具有广泛的临床应用。
生物印刷是一项蓬勃发展的技术,在组织工程和再生医学中有许多应用。然而,大多数用于生物打印的生物材料取决于使用牺牲浴和/或非生理刺激的使用。可打印的生物材料在其组成和机械性能方面通常也缺乏可调节性。为了应对这些挑战,作者介绍了一种新的生物材料概念,他们称其为“可单击的动态生物联系”。这些生物学使用可以打印的动态水凝胶,并通过点击反应进行化学修饰,以在打印后使用印刷对象的物理和生化特性。特别是使用透明质酸(HA)作为感兴趣的聚合物,研究者研究了使用基于富酯的基于硼酸酯的交联反应来产生可打印和细胞增强的动态水凝胶,从而允许生物涂纸。通过生物正交点击部分对产生的动态生物学进行化学修饰,以允许使用带有互补点击功能的分子进行各种后印刷修饰。作为概念的证明,作者执行了各种后打印的修饰,包括调整聚合物组成(例如HA,HA,硫酸软骨素和明胶)和Sti效应,以及通过粘附性肽固定化(即,RGD peptide)来促进细胞粘附。结果还表明,这些修改可以在时间和空间中控制,为4D生物打印应用铺平了道路。
足细胞是肾小球滤过屏障的细胞,在肾脏疾病中起着至关重要的作用,并作为新疗法的潜在靶点而受到关注。脑源性神经营养因子 (BDNF) 在修复足细胞损伤方面表现出良好的效果,但其通过肠外给药的疗效受到半衰期较短的限制。低温敏感脂质体 (LTSL) 是一种有前途的靶向 BDNF 递送工具,可在封装后保留其活性。本研究旨在改进 LTSL 设计,以便有效地封装 BDNF 并靶向释放到足细胞,同时保持稳定性和生物活性,并利用靶向肽的结合。虽然环状 RGD (cRGD) 用于体外靶向内皮细胞,但归巢肽 (HITSLLS) 被结合以供体内肾小球内皮细胞更特异性地摄取。载有 BDNF 的 LTSL 成功修复了足细胞中的细胞骨架损伤,并降低了肾小球共培养模型中的白蛋白通透性。cRGD 结合增强了内皮细胞的靶向性和摄取,突出了当 BDNF 释放由热响应性脂质体降解诱导时治疗效果的改善。在体内,靶向 LTSL 显示出在肾脏中积聚的证据,而它们的 BDNF 递送减少了蛋白尿并改善了肾脏组织学。这些发现突出了 BDNF-LTSL 制剂在恢复足细胞功能和治疗肾小球疾病方面的潜力。
植物病毒纳米颗粒(VNP)经过基因工程为呈现成骨的提示提供了一种有前途的方法,用于在骨组织工程中生物功能化水凝胶。柔性马铃薯病毒X(PVX)纳米颗粒通过呈现RGD基序,羟基磷灰石结合肽(HABP),OREDECTERTY PORIDGLUTAMATES(ORSECTAINS POLITGLUTAMATES(E8)依赖性依赖性依赖性依赖性依赖性的方式),从而大大增强了人间充质干细胞(HMSC)的附着和区分。因此,假设烟草病毒纳米颗粒的功能性肽是PVX的1.6倍,将产生这种影响。这项研究假设在涂有两个VNP的含有两个VNP的肽的表面上培养HMSC,用于细胞附着或矿化,可以进一步增强对骨生成的影响。通过不同的HMSC沉积的钙矿物质增加了两到三倍,而在PVX-RGD/PVX-HABP涂层上生长的HMSC的碱性磷酸酶活性显着超过任何其他VNP组合。通过使用具有不同功能的VNP的组合,在第一次观察到了上添加效应。发现,富裕的VNP几何形状比功能性肽的浓度更为关键。总而言之,各种呈肽的植物VNP表现出增强的增强作用,其显着潜力可有效地在骨组织工程中官能化富含细胞的水凝胶。
靶向溶栓的想法可以追溯到近三十年前。Dewerchin 及其同事设计了一种由抗血小板抗体和单链尿激酶 (sc-uPA) 组成的生物共轭物,以在啮齿动物模型中证明概念(就血凝块溶解和出血时间而言)。5 20 世纪 90 年代末,Yang 及其同事开发了一种由电荷修饰的抗纤维蛋白抗体和 tPA 组成的两部分系统,它们通过静电相互作用连接在一起,这种相互作用可以通过鱼精蛋白(一种碱性肽)和临床肝素解毒剂来消除。6,7 后来,设计了一种由治疗剂量的肝素触发的靶向血小板的静电纳米复合物 8 ,使用来自纤维蛋白原 γ 链的 14 聚体肽序列,该序列对活化的血小板表面(糖蛋白 IIb/IIIa)具有高亲和力。 8,9 tPA 的前体药物类型中还加入了内源性触发剂,该触发剂可通过血栓附近的凝血酶梯度激活。10 此外,在过去十年中,人们对寻找一种结合靶向和释放机制的颗粒型纳米载体以递送溶栓剂的兴趣日益浓厚。Vyas 和同事设计了一种脂质体载体,脂质体表面有 RGD 肽,用于递送由血凝块剪切力触发的链激酶。11,12 超声触发纳米系统似乎很有前景:阳离子化明胶/tPA 复合物 13,14 和微泡。15 最后但并非最不重要的是,超顺磁性纳米颗粒也用于靶向递送溶栓剂。16
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 是一种有包膜的、正义的、单链 RNA 病毒,属于 Betacoronavirus 属。其基因组由四种结构蛋白组成,即刺突 (S)、包膜 (E)、膜 (M) 和核衣壳 (N),其中 E、M 和 N 整合到病毒包膜中。S 糖蛋白以刺突的形式从成熟病毒体表面突出,对于病毒附着、融合和进入宿主细胞至关重要。虽然 SARS-CoV-2 的刺突蛋白与血管紧张素转换酶 2 (ACE2) 受体之间的关系已很容易确定,但 S1 亚基还含有一个溶剂暴露的精氨酸-甘氨酸-天冬氨酸 (RGD) 结合基序,该基序主要由整合素识别,特别是 a5b1 和 aVb3 (Sigrist 等人,2020 年;Tresoldi 等人,2020 年)。这些整合素主要在血管内皮细胞上表达,属于一大类异二聚跨膜受体家族,包含 a 和 ab 亚基,负责细胞粘附到细胞外基质以及包括免疫反应在内的其他信号传导效应和功能 (Hynes, 2002)。研究表明,使用小肽 ATN-161 和 Cilengitide 分别阻断 SARS-CoV-2 与 a 5 b 1 和 a V b 3 整合素的结合,可降低体内病毒感染性并减轻血管炎症(Amruta 等人,2021 年;Nader 等人,2021 年;Robles 等人,2022 年)。因此,我们建议紧急研究整合素作为 SARS-CoV-2 治疗靶点的治疗潜力(图 1)。