人工智能(AI)的最新进步彻底改变了用于储能技术(包括超级电容器和电池)的先进纳米材料的开发。AI驱动的方法可以使设计和发现,结构优化以及精确材料的性能预测,从而增强了储能解决方案。AI在材料设计中的整合促进了新型高性能纳米材料的识别。基于AI的未来可持续能源材料创新和可再生能源系统的具有成本效益的储能解决方案是重中之重。Subtopics of focus may include: Advanced energy storage materials;Novel new dimensions: Carbon-based nanomaterials and their heteroatom- doped GO, RGO, CNT, CNFs;Artificial Intelligence and future energy research;Artificial Intelligence for energy storage materials discovery;Solar-based and hybrid energy storage innovations and AI;AI for supercapacitor development: merits and demerits;AI for battery materials design;Behind安全电动电动电动电动电池的锂离子电池和替代电池系统。
生物药物免疫疗法的出现彻底改变了癌症和自身免疫性疾病的治疗。然而,在某些患者中,抗药抗体 (ADA) 的产生会阻碍药物的疗效。ADA 的浓度通常在 1-10 pm 范围内;因此它们的免疫检测具有挑战性。针对用于治疗类风湿性关节炎和其他自身免疫性疾病的药物英夫利昔单抗 (IFX) 的 ADA 是焦点。报道了一种双极电解质门控晶体管 (EGT) 免疫传感器,该传感器基于还原氧化石墨烯 (rGO) 通道和与栅极结合的 IFX 作为特定探针。rGO-EGT 易于制造并具有低电压操作(≤ 0.3 V)、15 分钟内稳健的响应和超高灵敏度(检测限为 10 am)。提出了基于 I 型广义极值分布的整个 rGO-EGT 传递曲线的多参数分析。结果表明,即使在其拮抗剂肿瘤坏死因子 α (TNF- 𝜶 ,IFX 的天然循环靶点) 同时存在的情况下,也可以选择性地量化 ADA。
缩写:SCs,超级电容器; SCs,微型超级电容器;CNTs,碳纳米管;GO,氧化石墨烯;rGO,还原氧化石墨烯;LrGO,激光还原氧化石墨烯;GOQDs,氧化石墨烯量子点;GQDs,石墨烯量子点;CNTs,碳纳米管;MWCNTs,多壁碳纳米管;HOPG,高度有序热解石墨;MOFs,金属有机骨架;LCVD,激光化学气相沉积;LIG,激光诱导石墨烯;LSG,激光划刻石墨烯;PLD,脉冲激光沉积;MAPLE,基质辅助脉冲激光蒸发;RIMAPLE,反应逆基质辅助脉冲激光蒸发;LIFT,激光诱导正向转移;LIBT,激光诱导后向转移;LIPSS,激光诱导周期性表面结构;PET,聚对苯二甲酸乙二醇酯; PVDF,聚偏氟乙烯;PI,聚酰亚胺;LIP,磷酸铁锂
摘要:过渡型三金属硫化物NiCoMn-S因在混合超级电容器中的高比容量而备受关注,而Ti3C2则因具有标志性的二维层状结构和优异的导电性而被视为一种潜在的新型电极材料。本文通过简单的一步水热法将NiCoMn-S纳米颗粒与二维层状Ti3C2复合,首次将其应用于混合超级电容器(HSC)的正极。大量的NiCoMn-S纳米颗粒分布在Ti3C2表面,为氧化还原反应提供了丰富的电化学活性位点。此外,Ti3C2的二维层状结构为离子传输提供了额外的电子通道,并降低了储能过程中的电荷转移阻力。 NiCoMn-S/Ti3C2-3.4%在1 A g-1密度下实现了347.1 C g-1的比容量,比纯NiCoMn-S(1 A g-1时270.2 C g-1)高28%。最后以NiCoMn-S/Ti3C2-3.4%为正极,RGO为负极组装成混合超级电容器(HSC),在1 A g-1密度下实现了164.3 C g-1的比容量,在15 kW kg-1的比功率下实现了16.2 Wh kg-1的高比能量。
摘要在这项研究中,已使用Callicarpa Maingayi叶提取物合成了新的还原氧化石墨烯(RGO)。制备了基于Fe 3 O 4纳米颗粒的氧化石墨烯和碳纳米管((Fe 3 O 4 - (RGO&CNT)))的新型磁性催化剂。将平均尺寸为25至40 nm的Fe 3 O 4纳米颗粒放在碳纳米管上,并减少氧化石墨烯片,而在还原的石墨烯氧化物片之间插入的碳纳米管有效地阻止了其聚集。(Fe 3 O 4-(RGO&CNT)复合材料具有较大的表面积和良好的电催化特性,适用于通过伏安法的检测和测定伊马替尼(IM)抗癌药。在优化的条件下,在0.1至40μmolL -1的浓度范围内实现了良好的线性性,检测和灵敏度的极限分别为57 nmol L -1和3.365μaμm-1。此外,制造的传感器在所有电化学测试中表现出可接受的可重复的行为和准确性以及高水平的稳定性。此外,提出的方法用于在生物样品中检测IM,回收率为94.0%至98.5%,相对标准偏差为2.1至4.4%。
摘要。氢进化反应(她)已成为生产清洁和可持续能量的有前途的技术。近年来,研究人员一直在探索各种材料,以有效地活动。在这项研究中,我们通过水热技术报告了两种不同材料,即MOS2和MOS2-RGO的合成。X射线衍射(XRD),傅立叶转换红外(FTIR)光谱和拉曼光谱法用于表征材料。XRD分析揭示了具有高度结晶度的六边形MOS2的形成。FTIR分析证实了MO-S键的存在,而拉曼光谱学为MOS2的形成提供了证据。评估材料的活性,线性扫描伏安法(LSV)。结果表明,MOS2和MOS2-RGO具有良好的活性,发作电位低和高电流密度。MOS2 -RGO材料与MOS2相比显示出其活性的改善,表明氧化石墨烯是增强MOS2性能的共催化剂的潜力。
生物药物免疫疗法的出现彻底改变了癌症和自身免疫性疾病的治疗。然而,在某些患者中,抗药抗体 (ADA) 的产生会阻碍药物的疗效。ADA 的浓度通常在 1-10 pm 范围内;因此它们的免疫检测具有挑战性。针对用于治疗类风湿性关节炎和其他自身免疫性疾病的药物英夫利昔单抗 (IFX) 的 ADA 是焦点。报道了一种双极电解质门控晶体管 (EGT) 免疫传感器,该传感器基于还原氧化石墨烯 (rGO) 通道和与栅极结合的 IFX 作为特定探针。rGO-EGT 易于制造并具有低电压操作(≤ 0.3 V)、15 分钟内稳健的响应和超高灵敏度(检测限为 10 am)。提出了基于 I 型广义极值分布的整个 rGO-EGT 传递曲线的多参数分析。结果表明,即使在拮抗剂肿瘤坏死因子 α (TNF- 휶 )(IFX 的天然循环靶点)同时存在的情况下,该方法也可以选择性地量化 ADA。
摘要:燃料电池位于现代能源研究的最前沿,基于石墨烯的材料作为绩效的关键增强剂。此概述探讨了用于燃料电池应用的石墨烯基底盘材料的最新进步。石墨烯的较大表面积以及出色的电导率和机械强度使其非常适合在不同的固体氧化物燃料电池(SOFC)以及质子交换膜燃料电池(PEMFC)中使用。本评论涵盖了各种形式的石墨烯,包括氧化石墨烯(GO),氧化石墨烯还原(RGO)和掺杂的石墨烯,突出了它们的独特属性和催化贡献。它还研究了结构修饰,掺杂和功能组积分对基于石墨烯基极的电化学特性和耐用性的影响。此外,我们解决了高SOFC工作温度下石墨烯衍生物的热稳定性挑战,这表明潜在的解决方案和未来的研究方向。该分析强调了基于石墨烯的材料在推进燃料电池技术方面的变革潜力,旨在提高效率,具有成本效益和耐用的能源系统。
摘要:实体瘤是全球癌症相关死亡的主要原因,其特点是肿瘤生长迅速、局部和远处转移。癌症治疗失败主要与肿瘤微环境的复杂生物学有关。基于纳米粒子 (NPs) 的方法已显示出克服实体癌病理生理特征所造成的限制的潜力,从而能够开发用于癌症诊断和治疗的多功能系统,并有效抑制肿瘤生长。在不同类型的 NPs 中,基于二维石墨烯的纳米材料 (GBN) 因其出色的化学和物理特性、易于进行的表面多功能化、近红外 (NIR) 光吸收和可调节的生物相容性,代表了开发用于治疗实体瘤的治疗诊断工具的理想纳米平台。本文回顾了基于石墨烯、氧化石墨烯 (GO)、还原氧化石墨烯 (rGO) 和石墨烯量子点 (GQD) 的纳米系统合成的最新进展,用于开发用于光声成像引导的光热化疗、光热 (PTT) 和光动力疗法 (PDT) 的治疗诊断 NP,应用于实体肿瘤破坏。本文讨论了每类 GBN 使用这些纳米系统的优势,同时考虑到不同的化学性质和多功能化的可能性,以及生物分布和毒性方面,这些方面是将其转化为临床应用的关键挑战。
Öz摘要在这项研究中,硼nitrür量子点(BNKN) /还原的氧化石墨烯(RGO)杂化结构的合成,这是一种用于超级电容器的新电极材料。bnkn具有与氧化石墨烯(GO)相同的晶体结构,因此优选BNKN@RGO杂种结构显示出非常好的电气性能。hekzagonal硼nitrür(H-BN)基于纳米酰基的杂种材料,BNKN,热稳定性和电导率原因近年来出于原因,而Grafen在超耐效率研究中通常更喜欢特定的表面积。此外,在该结构中添加不同的纳米利酶以提高图形的电容值是发展碳材料的电子发射器性能。因此,通过考虑在超级电容器中使用的混合电极电化学活性来测量特定的电容值将增加电化学活性。由于电化学研究的结果,在BNKN@RGOH杂交结构的5 mVs-1筛选速率下获得207.5 f/g高电容值。在1,000个周期中还进行了88.9%的环状稳定性性能。