Bt作物的应用范围以及田间Bt抗性害虫的出现呼唤新的害虫防治技术(Carriere等,2015;Jin等,2015;Tabashnik等,2013)。RNA干扰(RNAi)现象广泛存在于真核生物(植物、真菌、昆虫、动物和线虫等)中,并已被开发为一种有前途的作物健康保护技术(Zhang等,2017)。 RNAi 是一个自然过程,它通过多种方式调控基因表达:有效的转录后基因沉默(PTGS)、翻译抑制、RNA 不稳定化和/或通过指导 DNA 甲基化进行转录基因沉默(TGS)(Fire 等人,1998 年;Coleman 等人,2015 年;Ghildiyal 等人,2008 年;Huvenne 和 Smagghe,2010 年;Jones-Rhoades 等人,2006 年;Liu 等人,2020 年;Mao 等人,2007 年;Sherman 等人,2015 年)。本文,我们回顾了基于 RNAi 的植物保护技术的最新进展,特别是其在植物保护中的应用。
大麻 (Cannabis sativa L.) 可产生独特的植物大麻素,可用于制药。迄今为止,尚无针对大麻素生物合成基因的体内工程改造的报道,以更详细地阐明这些基因在这些具有医学重要性的化合物的合成中的作用。本文报道的是首次使用农杆菌浸润 RNAi 调节大麻素生物合成基因。用对应于 THCAS、CBDAS 和 CBCAS 基因序列的不同 RNAi 构建体转染的 Cannbio-2 C. sativa 菌株的真空浸润叶段使用实时定量 PCR 显示所有大麻素生物合成基因均显著下调。使用 RNAi 会发生显著的脱靶,导致高度同源转录本的下调。使用 pRNAi-GG-CBDAS-UNIVERSAL 观察到 THCAS (92%)、CBDAS (97%) 和 CBCAS (70%) 的显著 (p < 0.05) 下调。转染 pRNAi-GG- CBCAS 后,观察到 CBCAS (76%) 显著 (p < 0.05) 上调和 THCAS (13%) 不显著上调,表明相关基因能够合成多种大麻素。使用这种方法,可以进一步阐明对大麻素生物合成基因之间关系的理解。这种 RNAi 方法使功能基因组学筛选成为可能,可用于进一步的反向遗传学研究以及设计大麻菌株,其中目标大麻素生物合成基因过度表达和/或下调。诸如此类的功能基因组学筛选将进一步深入了解大麻中大麻素生物合成的基因调控。
1生物学科学系,加州大学圣地亚哥分校细胞与发育生物学部分21生物学科学系,加州大学圣地亚哥分校细胞与发育生物学部分2
按蚊属、伊蚊属和库蚊属的蚊媒传播多种医学上重要的病原体。目前的病媒控制工具已达到其有效性的极限,因此需要引入创新的病媒控制技术。RNAi 有助于在实验室中对蚊子基因进行功能表征,有朝一日可以作为一种新的病媒控制方法。最近在向蚊子提供物种特异性干扰 RNA 杀虫剂的微生物口服系统方面取得的进展可能有助于将该技术转化为实际应用。口服 RNAi 杀虫剂代表了一类新型生物合理杀虫剂,可以对抗全球杀虫剂抗药性发病率的上升,有朝一日可能成为综合人类疾病媒介蚊子控制计划的重要组成部分。
在结肠癌和直肠癌中,该基因总是与 TP53 一起被删除。因此,利用小干扰 RNA (siRNA) 进行 RNA 干扰 (RNAi) 以精确靶向/抑制 POLR2A 可能是选择性杀死 TP53 缺陷癌细胞的有效策略。然而,将 siRNA 特异性地递送到细胞质中以发挥其功能非常困难,这是 siRNA 疗法面临的主要障碍。本文合成二甲双胍碳酸氢盐 (MetC) 以开发 pH 响应性 MetC 纳米粒子,该粒子具有独特的“炸弹”,可有效地将 POLR2A siRNA 递送到细胞质中,这极大地促进了其内/溶酶体逃逸到细胞质中并增强了其对 TP53 缺陷癌症的治疗效果。此外,不含功能性 siRNA 的基于 MetC 的纳米粒子显示出显着的治疗效果,没有明显的毒性或免疫原性。
审查动脉粥样硬化的抽象目的是由胆固醇,细胞外基质和细胞碎屑的炎症和积累到动脉中定义的,这是心血管疾病(CVD)的共同因素,例如冠状动脉疾病,外周动脉疾病和Stroke。在这篇综述中,我们在临床试验和市场上讨论并描述了新型RNA干扰(RNAi)的疗法。最近的发现,第一个基于RNAi的疗法已进入控制动脉粥样硬化危险因素(即血液胆固醇水平)的临床用途。最先进的治疗方法是用称为Changisiran的药物对普罗蛋白转化酶枯草蛋白/Kexin 9型(PCSK9)的沉默,该药物已于2020年底批准用于治疗高胆固醇血症,并导致血浆胆固醇水平的强大降低。总结是针对动脉粥样硬化的新RNAi疗法现在进入市场,这些疗法的有用性将在较大的患者同类群中进一步评估。因此,这些新药在心血管疾病药物调色板中巩固了它们的生态位,还有待观察。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
配子型男性无菌性(GMS)在对粘性核雄性无菌线的花粉发育和种子传播中对杂交水稻繁殖的环境条件不敏感的种子传播起着重要作用。由于GMS的固有表型和遗传特征,因此很难找到并识别GMS突变体。然而,由于基因转录数据的丰度,已经发现了大量花粉特异性基因,其中大多数可能与GMS有关。为了促进对花粉发育和杂种利用中这些基因的研究,在这项研究中,使用RNAi和OsmyB76R作为报告基因建立了一种简单而有效的创建和识别GMS的方法。首先,修改了参与花青素合成的OSC1 / OSMYB76基因,我们已经验证了修改后的OSMYB76R与预先模拟的OSMYB76基因相同。然后,使用RNAi驱动器驱动子驱动子,导致了异常的花粉管生长,使用RNAi抗坏血酸氧化酶基因OSPTD1。最后,RNAi元素与OSMYB76R相关联并转化为OSMYB76突变体,并在T 1和F 1代发现了紫色颜色分离的变形。这表明OSPTD1 GMS已成功制备。与当前方法相比,此方法有几个优点。首先,将时间保存在材料制备中,因为比在常规方法中比较一代人需要比较一代,因此可以避免突变筛选。最后,结果更准确,背景效果要低得多,并且对植物没有损害。此外,对于识别,成本较低;不需要PCR,电泳和其他过程;并且不需要昂贵的化学药品或仪器。结果是准备和识别GMS基因的简单,有效,低成本和准确的方法。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月17日发布。 https://doi.org/10.1101/2024.11.29.626080 doi:Biorxiv Preprint
农业科学技术委员会(CAST)是一个非营利组织,其成员资格由科学和专业社会,公司,非营利组织和个人组成。通过其专家网络,将汇编,解释和传达基于科学的基于科学的信息与政策制定者,媒体,私营部门和公众进行交流。演员的主要工作是发表了由志愿者科学家和许多学科的科学专家编写和审查的高度视为基于科学信息的论文的发表。演员是通过会费,无限制的财务礼物和赠款来资助的。