MTTL1 A3243G、G3244A、A3252G、C3256T、T3271C、T3291C 癫痫、脑病、肌病、严重便秘、发育停滞 MTTV G1642A MTTF G583A MTRNR2 C3093G MTND1 T3308C、G3376A、G3697A、G3946A、T3949C MTND4 A11084G MTND5 A12770G、A13045C、A13084T、G13513A、A13514G MTND6 G14453A MTCYB 14787Ddel4 卡恩斯-赛尔综合征 (KSS) MTTL1 G3249A 身材矮小、糖尿病、心肌病、共济失调 慢性进行性眼外肌麻痹 (CPEO) MTTL1 C3254T 眼睑下垂、肌肉无力 MTT1 T4274C、T4285C、G4298A、G4309A MTTA T5628C MTTN T5692C MTTN G5698A MTTN G5703G MTTK G8342A MTTL2 G12294A、A12308G、T12311C、G12325A MTND4 T11232C 神经病变、共济失调和视网膜色素变性 (NARP) MTATP6 T8993C、T8993G 失明、小脑性共济失调、癫痫、认知障碍和周围神经病变 Leigh 综合征 (LS) MTTV C1624T 乳酸性酸中毒、发育不良、肌病、双侧对称性大脑皮层下病变 MTND3 T10158C MTND4 C11777A MTND5 T12706C MTATP6 T9176C, T9176G, T9185C, T9191C, T8993C
利用密度泛函理论 (DFT) 方法(即多体系统 Kohn-Sham 状态方程的量子力学处理)计算了 Bi 2 LaO 4 I 的各种性质。40,41 对于计算,我们使用了 WIEN2k 代码,这是一个增强平面波加局域轨道程序。42,43 考虑到电子交换关联函数,标准广义梯度近似 (GGA) Perdew-Burke-Ernzerhof 已用于参数化。44 除此之外,修改后的 Becke-Johnson (mBJ) 势已用于带隙估计。45 在整个布里渊区 (BZ) 中使用由一组 600 k 点生成的 11 11 4 k 网格,这对应于不可约 BZ 中的 63 个 k 点。自洽计算采用能量收敛标准 10 5 Ry 和电荷收敛标准 10 4 e 实现。弹性性质采用四方对称 IRelast 程序包计算。26 传输系数采用 BoltzTraP 计算,46 其在恒定弛豫时间近似 (CRTA) 和刚性带近似 (RBA) 下的玻尔兹曼半经典方程下工作。47,48
纳米技术(纳米医学)有望帮助我们实现上述目标。各种纳米药物输送方法的发展在疾病的诊断、检测和治疗中发挥着至关重要的作用。这些纳米药物输送系统可以安全地将药物以可控的浓度转移到癌组织,避免与网状内皮系统相互影响。17 纳米载体由于尺寸与生物结构相似,对用于癌症治疗的纳米药物输送系统有重大影响;这些纳米载体可以轻松穿透细胞膜并延长循环时间。18 – 20 由于血管生成快速且有缺陷(从旧血管合成新血管),肿瘤血管的通透性增加,从而使纳米载体能够进入。此外,肿瘤内淋巴引流不畅会困住纳米载体,使它们将药物转移到癌细胞附近。这些药代动力学修改通过明确针对癌症部位并在活性持续时间内保持治疗剂在其特定缺陷部位的增加浓度来提供更好的结果。这种靶向化疗剂利用细胞凋亡和麻醉来杀死癌细胞。 21 – 23 新一代纳米载体是二维纳米材料,例如二硒化钨24 (WSe2)、硅烯25、锗烯26、二硫化钼27 (MoS2)、硒化铋28 (Bi2Se3)、二氧化锰29、过渡金属二硫属化物 (TMDs)、六方氮化硼30 (h-BN) 和玻璃纤维增强塑料 (GRP) 因其独特的物理化学性质而成为一些重要的纳米载体。 31 – 34 玻璃纤维增强塑料 (GRP) 形成了蜂窝状二维晶格结构,其中所有碳原子都是 sp2 杂化的,因而具有令人难以置信的机械和电气性能,由于具有良好的表面反应性和自由 p 电子,因此常用于光电装置、太阳能电池中的光电导材料、药物输送和医学成像。35 自由表面 p 电子可有效进行 p – p 相互作用、与难溶性药物的静电或疏水相互作用以及药物输送系统中的非共价相互作用。36 玻璃纤维增强塑料 (GRP) 与生物分子、组织和不同类型细胞的相互作用对其生物医学应用、毒性和生物相容性具有重要意义。37 玻璃纤维增强塑料 (GRP) 作为纳米载体,可以通过内吞作用快速进入细胞,并在刺激下成功地将药物释放到细胞溶胶中。 38 玻璃纤维增强聚合物中装载药物与载体的重量比为 200%,这使玻璃纤维增强聚合物成为一种比其他纳米载体更高效、更受欢迎的纳米载体。39 玻璃纤维增强聚合物对槲皮素、5-氟尿嘧啶和柔红霉素的载药能力已被研究用于癌症治疗。40 通过 DFT 计算 41,42 和分子动力学模拟研究了药物与玻璃纤维增强聚合物之间的相互作用。HPT (3 0 ,5,7-三羟基-4-甲氧基阿伐酮)及其代谢物是具有生物活性的阿伐酮类化合物,可用作抗氧化剂、抗糖尿病剂、抗癌剂、雌激素剂、抗炎剂和心脏神经保护剂。43 这种多羟基阿伐酮常见于蔬菜、柑橘幼果、西红柿、苹果和鲜花中。44 HPT 具有疏水性(水溶性差),在消化道中稳定性不足,导致口服吸收不良。45 许多研究小组正在努力通过纳米药物输送系统(如纳米制剂、
的方法已被采用:17 - 20,即自上而下的方法,依赖于切割宏观系统,例如石墨,碳黑色或碳晶体,以获得纳米级量子点;以及基于有机化学的自下而上的方法,旨在生成从小型系统到较大系统的GQD。gqd是具有出色和可调特征的石墨烯的小片段,即间隙能,光吸收,光致发光和量子构成效应。21,22 These excellent properties make these zero-dimensional nanostructures more attractive for optical and optoelectrical devices used in industrial and medical elds, such as, photovoltaic devices, catalysis (electrocatalysis, pho- tocatalysis) bio-imaging, medical diagnosis.23几项实验和理论研究表明,可以通过调整大小的调整,24 edg guration,25
此外,电纺纳米bers具有几个有趣的特征,包括高表面积与体积比。可以通过电源的关键可调节工作参数(包括解决方案,过程和环境因素)的关键可调节工作参数所产生的直径和形状。22 - 24通过仔细调节这些因素,我们可以使用具有理想的物理特征来创建电纺纳米材料,用于高级用途。纳米sca sca o olls具有多种结构特征,已使用许多合成和天然生物聚合物设计。25 – 28 For synthetic polymers, the most commonly used for bone tissue engi- neering, heart gra s, wound dressing, and heart vessel replacement are biodegradable polymers including polylactic acid (PLA), poly-caprolactone (PCL), polyglycolic acid (PGA), polyurethane (PU), copolymer poly(lac-tic- co -glycolide) (PLGA)和聚(l -lactide -co -3-碳酸酯)(PLLA -CL)的共聚物。它们的机械质量(粘弹性和强度)和更快的降解速率使它们比天然聚合物显示出额外的优势。29 - 34
在金属卤化物钙钛矿领域,Cs 2 AgBiBr 6 双钙钛矿已成为包括太阳能电池在内的各种光电应用中有毒且不稳定的卤化铅钙钛矿的有效替代品。这归因于其出色的化学稳定性、无毒性质和卓越的光电特性,包括延长的载流子寿命。23 – 26 然而,Cs 2 AgBiBr 6 太阳能电池遇到了与效率相关的挑战,主要归因于其宽的 E g 。27 – 29 用杂质离子取代的过程已被认为是增强卤化物钙钛矿光学特性的有效方法。事实上,在众多策略中,替代因其简单性和易用性而脱颖而出。此外,它还具有在不干扰 LFHDP 晶体结构的情况下修改其性质的优势。 30 – 33 Ga 离子的加入已被证实是一种很有前途的掺杂剂,通过缓解复合,开路电压 (V oc ) 和 LL 因子 (FF) 均显著提高,从而提高效率。Ga 替代已证明具有通过减少表面陷阱来改善电荷传输的潜力。34 – 37 Boudoir 等人已将 Ga 掺杂到 Mg x Zn 1 − x O 中用于光伏器件,其浓度为 0.05(5%),他们表明 Ga 的这个浓度是最佳的。38 这个特定的浓度增强了器件性能,提高了捕获电荷载流子的效率。关于这个结果,本研究中使用了 0.05 Ga 浓度。本研究提出了一种新颖的探索方法,重点是将 Ga 成功掺入一种很有前途的 LFHDP 材料 Cs 2 AgBiBr 6 中。合成的 Cs 2 Ag 0.95 Ga 0.05 BiBr 6 经过 XRD、紫外可见光谱和太阳模拟器测量的全面检查。通过 XRD 分析阐明了材料的晶体结构和相纯度,从而深入了解了 Ga 取代对钙钛矿晶格的影响。紫外可见光谱深入研究了光学特性,揭示了吸收光谱的变化表明电子结构发生了变化。此外,太阳模拟器测量评估了 Cs 2 Ag 0.95 Ga 0.05-BiBr 6 的光转换效率和性能,使其成为光伏应用的有力候选者。这些表征技术的协同应用提供了对开创性 Cs 2 Ag 0.95 Ga 0.05 BiBr 6 的结构、光学和光伏特性的整体理解。这一贡献为可持续能源技术领域不断发展的 LFHDP 领域提供了宝贵的见解。重要的是,这项研究首次全面解释了 Cs 2 Ag 0.95 Ga 0.05 BiBr 6 引起的太阳能电池性能增强。
SARS和MERS COVS。截至2020年9月27日,被称为Covid-19的大流行已引起近3300万感染和超过一百万的死亡。3现在,该疾病处于一种致命和感染力的状态,造成了7 139 553; 5 730 184; 4 627 780; 1 122 241; 784 268; 782 695; 710 049; 693 556; 665 188; 664 799和481 141在美国,印度,巴西,俄罗斯,哥伦比亚,秘鲁,墨西哥,西班牙,南非,阿根廷和法国等国家中的案件。4感染的每日损失也很高,在这些国家 /地区的峰值至2020年5月20日达到顶峰。在这些致命的条件下,该疾病缺乏批准的效果药,这使得这种情况更加严重和至关重要。我们小组的有据可查的方法是合理地重新使用现有药物以替代用途而不是报告的药物重新使用,这是解决此大流行的时间限制和药物开发的临床试验过程的合理方法。使用抗病毒药物,例如Oseltamivir,Favinapir,Ganciclovir - Ritonavir,Remdesivir和Lopinavir,已针对Covid-19疾病进行了临床测试。氯喹,一种抗疟药,已被认为对COVID-19的治疗有效。5 - 7这些是命中和试用基础上的策略的例子。基于这些研究,使用计算方法将一些研究发现到新的水平,以识别该致命的候选药物
特别值得注意的是它们的优质功率密度,虽然具有较低的能量密度,但其高约十倍。这种独特的特征使超级电容器与电池结合使用,以满足峰值功率需求或能量收集系统,以便在短时间内从可再生资源中收集电力。典型的超级电容器由一个分离器,两个电极和一个电解质组成。大多数市售的超级电容器都利用液体有机电解质,例如乙腈中的四乙基氨基铵4虽然这些电解质提供了相对较高的离子迁移率和快速电荷/放电动力学,但由于电解质泄漏的可能性,它们的使用显着和环境风险很大,因此需要用刚性和可靠包装的超级电容器开发以包含液体电解质。包装降低了能量密度,因为用于封装的材料增加了设备中非活性组件的比例。此外,这些液体电流不太适合在可穿戴,可伸缩或exible电子设备中的新兴应用中,在这种应用中,薄和extiblesible是至关重要的。这些限制强调了能够满足下一代电子设备更严格要求的高级超级电容器的需求。由于消除了与液体相关的泄漏风险和易度问题,固体电解质可增强安全性。11然而,它们避免了缺点,例如缺乏,室温下离子电导率较低以及电解质和电极之间的界面问题,从而限制了它们在可穿戴电子中的应用。5,6为了解决这些局限性,凝胶聚合物电解质(GPE)已成为一种有希望的替代方案,将固体电解质的安全性和稳定性与液体的质量和较高的离子诱导相结合。7 - 10 GPE可以归类为异质(相分开)和均匀(均匀)凝胶,而异质GPE是最常见的。这些由带有互连孔的聚合物网络与电解质相互连接,其中离子转运主要发生在肿胀的凝胶或液相中。在环境温度下,许多GPE表现出约10-3 s cm -1的离子电导率,显着改善了超级电容器的电化学性能。
可耐醚电解质和高反应性锂金属阳极仍然限制了Li - S电池的商业应用。在LI - S细胞系统中,最常用的电解质溶剂是醚溶剂,例如二甲氧基乙烷(DME)和1,3-二氧烷(DOL),它们具有非常低的灰点(对于DME 6和1°C,DME 6和1°C的DOL 7)和高挥发性。这些醚电解质溶剂的这些特征确定使用Li - S细胞有很大的安全风险。对于反应性锂金属阳极,它可以很容易地与Li - S细胞中的基于醚的电解质和可溶性中间产物 - des des反应,并立即形成锂金属阳极表面上的固体电解质相(SEI)层。8不幸的是,SEI层倾向于不稳定和脆弱,这会导致严重的不可逆转能力降解。更平均,锂阳极的非均匀电化学溶解/沉积将导致锂树突的形成,这可以穿透分离器并引起严重的安全危害。为了解决上述问题,已经在更安全的电解质上为LI - S电池(例如固体电解质,离子液体,高浓度电解质,uorated溶剂和AME阻燃剂)进行了大量出色的工作。尽管这些作品取得了出色的改进,但它们也具有明显的缺陷,例如界面兼容性差和复杂的制备过程(固体电解质),9
随着人们的生活质量的不断提高,近年来能源消耗日益增加。即将到来的全球能源危机引起了全世界的关注。此外,传统燃料的减少会引起能源危机,传统燃料的燃烧会引起温室的影响,这对人们的现有环境产生了重要的威胁。在这种严峻的情况下,多年来的大量研究集中在将相变材料(PCM)纳入建筑材料中,以实现节能和传热增强的目的。1,2将PCM纳入具有稳定形状的建筑材料中,近年来已被广泛考虑。PCM是一种新型的功能材料,通过改变形式并保持温度不变,吸收或释放大量能量。它在建筑能源节能,太阳能利用,热恢复,温度控制,电池热管理和其他ELD的应用方面具有良好的前景。3 - 7根据相变状态,PCM通常分为三类:固体 -