此外,2D TMD 是出色的光热剂,可以将近红外光转化为热能。8,9 因此,2D TMD 作为非接触式光触发药物输送的载体和肿瘤消融的光热剂越来越受欢迎。10–12 尽管潜力巨大,但 TMD 在生物医学应用中使用的一个主要限制因素是其不溶于水,因此难以在水介质中剥离,而剥离最终会导致超薄片的形成。然而,最近很少有研究利用牛血清白蛋白、海藻酸钠以及 DNA 链作为剥离剂的可能性。13–16 最近,聚乙烯吡咯烷酮剥离的 2D 二硫化钨纳米片被用于体内热成像和治疗结肠腺癌。 17 这种剥离的超薄二维 TMD 纳米片已被纳入基于水凝胶的生物医学治疗装置中。18,19
电子和空穴对以及(ii)强氧化还原电位以支持材料间的高电子转移。2先进纳米结构和纳米层状光催化剂的出现为多学科研究开辟了道路,旨在定制物理化学、结构和光电特性,以促进增强有机污染物的催化作用。增强催化性能和材料可见光活化的选择包括半导体的金属或非金属掺杂3和石墨烯等催化纳米结构的缺陷工程。4最有前途的工程策略涉及电子屏障的设计,它被引入导电层和半导体层的交界处。5导电层(通常是金属或碳表面)与半导体材料(通常是金属氧化物)之间的界面可能导致两种类型的结的形成,即欧姆结或肖特基结。 6 一方面,当半导体材料提供比导电材料更高的功函数时,就会形成欧姆结。 7 然而,欧姆接触在金属和导电材料之间提供了持续的电子流。
为了针对特定的细胞器,目标分子通常与靶向单元结合,2,11 已在质膜、26 溶酶体、27 线粒体、28,29 和内质网 (ER) 中得到充分证实。30 但是,化学修饰可能会改变分子的性质,这是该方法的一个重要限制。或者,可以使用生物正交化学实现对细胞区室的特定靶向,31 – 33 其中目标分子可以在细胞中与靶分子(例如糖或脂质)发生反应,通常使用高效的“点击”反应。 34,35 此外,与蛋白质标签融合的靶蛋白,例如 SNAP-tag、36 CLIP-tag 37 和 HaloTag 38 可与相应的化学配体发生反应,从而允许将小分子(染料)靶向特定细胞器并对其局部特性进行成像。39,40 然而,这些方法利用本质上不可逆的反应,因此位于靶细胞器内的分子会发生化学修饰。是否有可能将同一分子靶向不同的特定细胞区室,同时在靶向过程之前和之后保留其天然化学结构?可以考虑利用动态共价化学通过与位于特定细胞区室的靶向配体发生原位反应来定位分子。在这种情况下,即使靶向到感兴趣的位点(细胞器),可逆过程也能确保未修饰物种的存在。动态共价化学是产生和打破共价键的有效方法
1997 年,Dillon 等人首次完成了一项里程碑式的工作,利用 SWCNT 凝聚高密度氢气,并证实了 H2 在 SWCNT 上的物理吸附。11 此后,人们通过大量的实验和理论研究对碳纳米管基材料的储氢进行了研究。12–17 由于人们在这方面做出了大量的科学努力,近年来基于管状多孔材料的室温储氢不断提高。然而,这些储氢能力的提高是通过增加氢与储氢体系之间的结合能来实现的,18,19 这最终会导致氢的解吸更加困难。此外,高压或低温的工作环境也会导致 SWCNT 储氢材料中 H2 的解吸困难
半导体 CNT 制成的场效应晶体管 (FET) 的特性。使用等离子体辐射故意向 CNT 中添加缺陷,并通过拉曼光谱确认缺陷(主要是空位)的存在。添加缺陷的 CNT-FET 对 NO 2 的化学电阻响应比具有基线缺陷水平的 CNT-FET 大得多,再次表明缺陷会改善化学电阻响应。大量 CNT 研究调查了晶格缺陷,这里指的是结构缺陷和与 sp 2 键合碳原子完美网络的取代偏差。在 CNT 生长过程中,当一个或多个碳原子被其他元素的原子取代时,可能会发生取代“掺杂”。氮 21,22 和硼 23,24 是最常研究的取代掺杂剂。由于掺杂这两种元素的CNT在电池中表现出良好的储能性能,因此已经开发出可控工艺来按需应用此类掺杂剂。掺杂元素会在CNT结构中产生局部变化25,从而增强纳米管26的表面反应性,因此也可能改善气体传感性能。在已发表的实验中,硼和氮掺杂的双壁和多壁CNT对NH 3 和NO 2 检测表现出了改进的化学电阻灵敏度。26–28结构晶格缺陷(例如空位、双空位和Stone-Wales缺陷)也可能出现在CNT生产过程中29–31,并且已知会改变纳米管的电子特性32,33它们对化学电阻气体传感的灵敏度和选择性影响已被研究19,34,并被发现可以提高CNT在NH 3 、NO 2 和H 2 检测中的性能。
到目前为止,已经探索了许多无金属TADF分子,以高效率为蓝色,绿色和红色的电脑(EL),其最大外部量子效率(EQE MAX)分别超过38%,11 37%12和27%,分别为13。尽管出现了出色的EQE值,但由于较高的能量水平和更长的兴奋状态寿命,蓝色OLED往往显示出比绿色和红色的稳定性差得多。14,15尽管设备寿命是进一步商业化OLED的关键参数,但在各种文献研究中通常不会收集或提及。16要解决蓝色TADF OLED的固有不稳定,替代策略已被广泛使用并被证明是最有效的方法之一。duan和同事通过将TERT - 丁基取代基作为空间盾牌引入了有效和稳定的蓝色TADF发射器,这不仅提高了光致发光的效率,而且还提高了TADF分子的稳定性。17因此,在
受环境因素和肠道微生物群的变化影响,CD o cd o gen会导致先天和适应性免疫反应的疾病,范围从轻度活性疾病(如偶尔的直肠腹泻)和严重活跃的疾病到可能导致10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 每天流血弓箭的平移。此外,患有CD的人患有癌症,骨质疏松症,贫血,营养症,抑郁症,感染和血栓形成的风险增加。3然而,cd和uc之间的位置不同。在CD中,在弹药中通常是透壁,CD可能与肠肉芽肿,狭窄和stulas有关,而在UC中,cd通常仅限于粘膜,并且CD中的症状在UC中并不典型。4此外,IBD,包括两种特发性CD和UC的类型,以及非典型类型的胶原蛋白结肠炎和难治性结肠炎,被特征在于慢性胃肠道症中的慢性胃肠道,交替的临床缓解复发,并且需要通过结肠直肠切除来治疗患有严重IBD的患者。5 IBD在美国有超过100万个人,而欧洲超过250万。IBD的患病率在西方世界中最高,影响多达0.5%的总人口,治疗成本超过60亿。6主要有5-氨基水杨酸,6-
同时实现对药物治疗动力学、代谢途径、生物分布或递送药代动力学的原位检测。3此外,消除额外的显像剂或抑制剂不仅可以大大简化给药过程,而且还可显著降低显像剂和治疗药物之间出现不良剂量不匹配或药物 - 药物串扰的可能性。4然而,事实证明,设计针对专门用途的合成治疗诊断工具包非常困难,特别是用于监测生物系统中的目标分析物。针对癌细胞的理想治疗诊断分子需要具有作为抑制剂的生物活性,同时保持探针的光物理/化学性质。开发治疗诊断剂最流行的策略之一是使用纳米材料来结合药物成分和探针成分。 3,5 – 7 然而,这些策略的生物相容性有限,因为基于纳米材料的平台通常尺寸较大,
本综述介绍了设计刺激响应、功能性、侧链、端接液晶原基液晶聚合物 (LCP) 方面的最新进展。合成方法(包括受控技术和活性技术)的发展为获得定义明确的液晶聚合物提供了方便。例如,线性液晶嵌段共聚物 (LCBCP)(具有线性、螺旋-螺旋、非液晶嵌段和端接液晶原基液晶嵌段的嵌段共聚物)的合成为获得具有与传统嵌段共聚物类似的形态和性质的聚合物提供了途径。然而,具有分支螺旋-螺旋非液体液晶嵌段和端接液晶原基液晶嵌段的拓扑分支 LCBCP 的合成用于操纵所得聚合物的相行为、形态和取向动力学。此外,支链液晶无规共聚物的合成(其中支链螺旋非液晶单元和端接液晶单元呈统计分布)可产生前所未见的螺旋和弯曲界面,具有新的增强特性。最后,将有机染料分子整合到各种液晶聚合物框架中的合成策略可产生新的光学活性和自适应软材料。在展望部分,讨论了对拓扑多样化的合成和天然衍生的液晶聚合物结构的需求,以及生产功能材料及其应用的加工工具和场导向组件。
乳腺癌是最常见的妇科恶性肿瘤之一,占所有恶性肿瘤的7-10%。1这也是一种严重的疾病,会影响妇女的身心健康以及威胁她们的生命。2 - 4化学疗法是乳腺癌的重要治疗方法,除手术和放射疗法外。盐酸二氨基霉素(DOX)被视为第一线抗肿瘤药物,5对乳腺癌表现出极好的治疗作用。然而,由于其药代动力学不良和整个身体中的非规定C分布以及全身给药以及对肿瘤的低调,DOX会导致长期给药的严重毒性影响。6,7利用目标药物输送系统策略是一种有效的方法,可以通过改善药物的渗透