图 1 用于体内皮质离子波动记录的无线离子敏感场效应晶体管 (ISFET)。a ISFET 装置的源极和漏极连接到电容器的顶板和底板,与电路并联。b 谐振器的 Q 取决于 ISFET 栅极电极局部的离子浓度。c ISFET 的活性位点通过颅窗嵌入体感皮质表面。d 以无线方式检测到的离子波动在时间域中由 60 秒窗口内谐振器和天线之间的 S11 最小值表示。
尽管已有健康志愿者中心律失常患病率的估计值,但缺乏其他特定人群的基线数据,例如越来越多地参与临床试验的超重和肥胖人群。本研究调查了两项体重管理药物 1 期试验(NCT03661879、NCT03308721)中超重或肥胖参与者的心律失常基线患病率。参与者年龄为 18– 55 岁,无心血管疾病史,体重指数 (BMI) 为 25.0–39.9 千克/米 2,接受生命体征、心电图 (ECG) 记录和电解质异常筛查。心脏病专家收集并手动审查基线 24 小时心电图 (Holter) 数据。主要终点是发生预定义心律失常≥ 1 次的参与者比例。从 207 名参与者那里获得了连续 12 导联心电图数据。大多数心律失常发生在 < 3% 的参与者中。房室传导阻滞和其他潜在恶性心律失常并不常见。与年龄、性别或 BMI 无关。房室传导阻滞、非持续性室性心动过速和其他潜在恶性心律失常的患病率与体重正常的健康参与者报告的患病率相似。在体重管理药物的临床试验中,了解超重和肥胖人群心律失常的基线患病率可能会为试验资格标准提供信息,改善试验决策,并有助于与卫生当局的讨论。如果心律失常风险是分子固有的,或者在临床前研究中已经观察到信号,则应在这些试验中考虑基线 Holter 读数和实时心电图遥测监测。
摘要:在一个越来越相互联系的世界中,电子设备渗透到我们生活的各个方面,旨在监视生理信号的可穿戴系统正在迅速接管运动和实力领域,以及康复和康复等生物医学领域。目的是为该领域提供新颖的方法,在本文中,我们讨论了可穿戴系统的开发,用于根据可移植的,低功耗的自定义PCB的特定使用,该系统设计用于与非惯用性的超易于良好的超透明和可强调的Parylene-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo Electrodes。已在标准的休息状态实验中测试了所提出的系统,并且将其在两个不同状态的歧视方面与商业可穿戴设备的歧视(即穆斯耳机)进行了比较,显示出可比的结果。这一第一个初步验证表明,可以方便地采用可方便的可容纳纹身纹身电极集成了便携式系统,以使大脑活动的不可思议。
摘要 对行为非人类灵长类动物进行电生理学研究通常需要将动物与其社会群体分开,并限制其部分运动,以进行良好控制的实验。当研究目标本身并不要求限制动物的运动时,通常仍需要通过系留数据采集来满足实验需求。同时,最近的技术进步允许在有限尺寸的围栏内以高带宽进行无线神经生理学记录。在这里,我们展示了来自不受约束的恒河猴的单单位分辨率无线神经记录,当时它们在我们定制的独立触摸屏系统 [实验行为仪器 (XBI)] 上在其家庭环境中执行自定进度的结构化视觉运动任务。我们能够成功地表征神经对任务参数的调节,例如在运动规划和执行过程中的视觉空间选择性,这与通过基于设置的神经生理学记录获得的现有结果一致。我们得出结论,当出于科学原因不需要限制运动和/或高度控制、隔离的环境时,笼式无线神经记录是一种可行的选择。我们提出了一种方法,让动物能够以自定节奏的方式使用我们的 XBI 设备,既可以进行全自动训练和认知测试,也可以在熟悉的环境中获取神经数据,与同类保持听觉联系,有时还可以保持视觉联系。
摘要:长期植入硬膜外脑电图 (ECoG) 电极会导致硬脑膜增厚和界面部位周围纤维化增生,这对于用于监测各种神经退行性疾病的慢性神经 ECoG 记录应用是一个重大问题。本研究介绍了一种在柔性 ECoG 电极上开发光滑液体注入多孔表面 (SLIPS) 的新方法,用于慢性神经界面,具有增加细胞粘附性的优势。在演示中,电极是在聚酰亚胺 (PI) 基板上制造的,并使用铂 (Pt) 灰来创建多孔纳米锥结构以注入硅油。纳米锥和注入的光滑油层的组合产生了 SLIPS 涂层,该涂层具有低阻抗 (4.68 k Ω ) 水平,有利于神经记录应用。电化学阻抗谱和等效电路模型也显示了涂层对记录部位的影响。细胞毒性研究表明,该涂层不具有任何细胞毒性潜力;因此,它对人体植入具有生物相容性。大鼠模型的体内(急性记录)神经记录也证实,噪音水平可以显著降低(近 50%),并且有助于慢性 ECoG 记录,以实现更广泛的神经信号记录应用。
摘要:随着现代人口的增长和平均寿命的增加,越来越多的患者患上了痴呆症和阿尔茨海默氏症等神经退行性疾病。有癫痫、药物滥用和抑郁症等精神健康障碍病史的患者在晚年患阿尔茨海默氏症和其他神经退行性疾病的风险更大。利用从天普大学异常脑电图 (EEG) 语料库获得的患者脑电波记录,深度学习长短期记忆神经网络用于对患者的大脑年龄进行分类和预测。所提出的深度学习神经网络模型结构和脑电波处理方法使六个年龄组患者的大脑年龄分类准确率达到 90%,脑年龄回归分析的平均绝对误差值为 7 年。所取得的结果表明,使用原始患者来源的脑电波信息比使用其他脑电波预处理方法的方法具有更高的性能指标,并且优于其他深度学习模型,例如卷积神经网络。
摘要:在新生儿重症监护病房 (NICU) 进行长期脑电图监测的挑战在于,在技术经验有限的情况下,如何找到建立和维持足够记录质量的解决方案。本研究评估了皮肤电极接口的不同解决方案,并开发了新生儿一次性脑电图帽。将几种替代皮肤电极接口材料与传统凝胶和糊剂进行了比较:导电纺织品(纹理和编织)、导电尼龙搭扣、海绵、高吸水性水凝胶 (SAH) 和水纤维片 (HF)。比较包括对选定材料的脱水评估和信号质量记录(皮肤相间阻抗和电力线 (50 Hz) 噪声)。测试记录是使用集成在前臂袖子或前额带中的按扣电极以及皮肤电极接口来模拟脑电图帽进行的,目的是在未准备的皮肤上进行长期生物信号记录。在水合测试中,导电纺织品和尼龙搭扣表现不佳。虽然 SAH 和 HF 在模拟孵化器环境中保持充分水合超过 24 小时,但海绵材料在前 12 小时内脱水。此外,SAH 被发现具有脆弱的结构,并且在 12 小时后容易产生电气伪影。在电阻抗和肌肉活动记录比较中,厚层 HF 的结果与未经准备的皮肤上的传统凝胶相当。此外,通过 1-2 Hz 和 1-20 Hz 归一化相对功率谱密度测量的机械不稳定性与使用皮下电极的临床 EEG 记录相当。结果共同表明,皮肤-电极界面处的厚层 HF 是无需准备的长期记录的有效候选者,具有许多优点,例如持久的记录质量、易于使用以及与敏感的婴儿皮肤接触的兼容性。
标题:使用耳脑电图 (cEEGrids) 记录大脑活动 作者及所属机构:Daniel Hölle、Martin G. Bleichner 日常生活神经生理学组,德国奥尔登堡大学心理学系 视频:https://uol.de/en/psychology/neurophysiology/resources/ceegrid-video-tutorial 摘要:cEEGrid(耳脑电图)可以长时间记录实验室内外的大脑活动。在此协议中,我们描述了如何设置和使用 cEEGrids 进行记录。 摘要:cEEGrid(耳脑电图;耳脑电图)是一种不显眼且舒适的电极阵列,固定在耳朵周围。它适合长时间研究实验室外的大脑活动。先前的研究表明,cEEGrid 可用于研究实验室内外的各种认知过程,甚至可以研究一整天。要记录高质量的耳部脑电图数据,必须进行精心准备。在此协议中,我们解释了成功使用 cEEGrids 进行实验所需的步骤:首先,我们展示了如何在记录之前测试 cEEGrid 的功能。其次,我们描述了如何准备参与者并安装 cEEGrid,这是记录高质量数据的最重要步骤。第三,我们概述了如何将 cEEGrids 连接到放大器以及如何检查信号质量。在此协议中,我们提供了最佳实践建议和技巧,使 cEEGrid 记录更容易。如果研究人员遵循此协议,他们就完全有能力在实验室内外使用 cEEGrid 进行实验。简介:使用移动耳脑电图 (EEG),可以在日常生活中记录大脑活动,并获得对实验室以外的神经处理的新见解 1 。为了适合日常生活,移动耳脑电图系统应该是透明的:不引人注目、易于使用、运动耐受性好,即使佩戴几个小时也舒适 2 。 cEEGrid 是一种 C 形耳脑电图系统,旨在满足这些要求,以最大限度地减少对自然行为的干扰。cEEGrid 由十个印在柔性印刷材料上的 Ag/AgCl 电极组成 3 。结合微型移动放大器和用于数据采集的智能手机 4、5,cEEGrid 可用于长时间收集耳脑电图 1 。有许多神经过程可以通过耳朵周围的电极记录 6、7 。实验室进行的几项研究表明 cEEGrid 在研究这些过程方面的潜力。它已成功用于听觉注意力解码,准确度高于偶然水平 8-12 。Segaert 及其同事 13 使用 cEEGrids 量化
摘要 - 具有光学动力和数据遥测的基于最小的和无线近红外(NIR)的神经记录器是一种有希望的长期监测的有前途的方法,该方法具有最小的现状独立唱片仪之间的最小物理维度。但是,基于NIR的神经记录综合电路(IC)的主要挑战是在存在光引起的寄生寄生短路电流的情况下保持强大的操作。当信号电流保持较小以降低功耗时,尤其如此。在这项工作中,我们为电动机预测提供了一个容忍和低功率的神经记录IC,该记录可以在低调的300 µw/mm 2中充分发挥作用。,它以4.1噪声效率因子(NEF)伪抗抑制作用的放大器,芯片神经特征提取器和单个的Mote-Mote级增益控制,在38℃时达到了0.57 µW的最佳能力消耗。应用猴子的20通道预录的神经信号,IC可以预测用
经颅电刺激 (tES) 是一种神经调节方法,需要通过头皮电极非侵入性地施加弱电流 [1,2]。在所有其他类型的刺激中,经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS) 是研究最多的技术 [3,4]。由于 tDCS 提供特定强度的直流电,而 tACS 施加特定频率的交流电,因此它们对神经细胞和非神经细胞的影响有所不同 [5,6]。事实上,注入电流的时间特征(刺激波形)以及空间特征(电极的大小、形状和蒙太奇)和个人头部解剖结构决定了诱发生物变化并最终导致行为变化的电剂量 [7](有关 tES 效应的系统描述,请参阅 [8,9])。然而,对脑组织中产生的电场 (E 场) 的可接受估计仍然缺乏 [10]。虽然它本身并不能预测刺激效果[11],但这些信息对于以下方面至关重要:(I)填补理论空白[12]和(II)提供优化的刺激方案[12,13]。