摘要。连接分析是研究硬连线大脑结构以及与人类认知相关的灵活功能动力学的强大技术。最近的多模态连接研究面临着将功能和结构连接信息组合成一个集成网络的挑战。在本文中,我们提出了一个带有图约束弹性网络(Graph-Net)的单纯形回归模型,以低模型复杂度以生物学有意义的方式估计由结构连接丰富的功能网络。我们的模型使用稀疏单纯形回归框架构建功能网络,并基于 GraphNet 约束丰富结构连接信息。我们将我们的模型应用于真实的神经影像数据集,以展示其预测临床评分的能力。我们的结果表明,与使用单一模态相比,整合多模态特征可以检测到更敏感和更细微的大脑生物标志物。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
在本文中,我们为在有依赖数据的存在下提供了过度参数深的非参数回归的统计保证。通过分解误差,我们建立了非渐近误差界限以进行深度估计,这是通过有效平衡近似和概括误差来实现的。我们得出了具有约束权重的H型函数的近似结果。此外,概括误差受重量标准的界定,允许神经网络参数编号大得多。此外,我们通过假设样品起源于具有较低内在维度的分布来解决维度诅咒的问题。在这个假设下,我们能够克服高维空间所带来的挑战。通过结合额外的错误传播机制,我们为过度参数深拟合的Q-材料提供了Oracle不等式。
在金融领域,信用风险是与抵押,信用卡和其他类型贷款有关的常见现象。总是有可能借款人不会全额偿还贷款。与贷款申请有关的风险评估是贷款机构在残酷市场和盈利能力中生存的主要问题。贷款机构每天从消费者那里收到许多贷款申请,但并非所有这些贷款都得到了批准。这些机构使用各种技术来评估申请人的信息,以便做出最佳选择。尽管如此,许多人未能每年支付贷款。贷方必须处理这种巨大损失[1]。人工智能技术可以实现深度挖掘和分析大数据,以应对金融技术带来的财务风险和挑战。与传统专家评级的缺点相比,用于预测银行信用贷款违约的机器学习模型表现更好[2]。人工智能可以利用大数据和机器学习技术来分析借款人的个人信息,信用记录和其他相关数据,从而帮助银行和其他金融机构评估信贷风险并做出更准确的贷款决策。作为一种新兴技术,人工智能无疑将成为金融业发展的巨大推动力。它将降低客户贷款的违约率,并使银行的资本流程过去正常,银行和其他金融机构经常使用人工分析来确定客户的信用。基于以前的数据,人工信用分析是一种效率低下且耗时的方法。它无法处理大量数据,例如机器学习。同时,人工信用分析的准确性远低于机器学习的准确性。机器学习可以发展更多自动化
摘要:糖尿病疾病在全球范围很普遍,预测其进展至关重要。已经提出了几种模型来预测这种疾病。这些模型仅确定疾病标签,从而使发展疾病的可能性不清楚。提出一个预测疾病进展的模型至关重要。因此,本文提出了一个逻辑回归模型,以预测糖尿病综合征发病率的可能性。使用Sigmoid函数的模型利用逻辑回归的功能。使用PIMA印第安人糖尿病数据集评估了模型的性能,并表现出很高的精度,灵敏度和特异性。预测准确率为77.6%,灵敏度为72.4%,特异性为79.6%,I型误差为27.6%,II型误差为20.4%。此外,该模型表明了使用实验室测试的可行性,例如妊娠,葡萄糖,血压,BMI和糖尿病性重复功能,以预测疾病进展。提出的模型可以帮助患者和医生了解疾病的进展并及时进行干预措施
大多数患者在寻求治疗时失去了最好的手术机会[3,4]。因此,确定结肠癌的新型诊断和治疗靶标对于增强其诊断和治疗以及改善患者预后至关重要。衰老代表对各种应力信号的细胞反应,可保护细胞免受不必要的伤害。在癌症的背景下,衰老具有双重功能:它通过抑制受损细胞的增殖而充当肿瘤抑制因子,同时通过促进炎症环境来促进癌症。此外,癌细胞也可以表现出衰老反应。这既提出了癌症顺序治疗的挑战和机会,然后利用衰老疗法进行了鼻溶疗法[5]。长的非编码RNA(LNCRNA)是一种超过200个核苷酸的非编码RNA。它通过调节基因表达而在生物学上发挥作用,并且对癌症的发展和进展至关重要[6]。lncRNA在调节结肠癌中的各种过程中发挥了重要作用,包括细胞增殖凋亡和细胞死亡,以及影响细胞周期迁移,能力,艾symal转变(T),癌症干细胞行为以及对结肠癌疗法的耐药性[7]。E2F1反应LncRNA LIMP27与P27 mRNA竞争与细胞质HNRNP0结合,选择性下调P27表达。这种相互作用会导致G0/G1相细胞周期,并促进缺乏p53的结肠腺癌细胞的增殖,肿瘤性和治疗性[8]。研究结肠腺癌中与衰老相关的LincrNA可以增强我们对这种癌症发作和进展的分子机制的理解,同时也为发展新的潜在干预策略铺平了道路。
意义:功能性近红外光谱 (fNIRS) 是一种非侵入性技术,用于测量与神经功能相关的人体皮层血流动力学变化。由于其小型化潜力和相对较低的成本,fNIRS 已被提议用于脑机接口 (BCI) 等应用。与诱发神经活动产生的信号相比,大脑外生理产生的信号幅度相对较大,这使得实时 fNIRS 信号解释具有挑战性。通常使用结合生理相关辅助信号(例如短分离通道)的回归技术将脑血流动力学反应与信号中的混杂成分分离。然而,大脑外信号的耦合通常不是瞬时的,需要找到适当的延迟来优化干扰消除。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2023年5月19日。; https://doi.org/10.1101/2023.05.17.541233 doi:biorxiv Preprint
目的:探索基于梯度提升决策树的人工智能方法,用于预测重症监护病房的全因死亡率,并将其性能与文献中最近的逻辑回归系统以及在同一平台上构建的逻辑回归模型进行比较。方法:使用重症监护医学信息集市数据库训练和测试梯度提升决策树模型和逻辑回归模型。在重症监护病房 5 小时内收集的成年患者 1 小时分辨率生理测量值包括八个常规临床参数。该研究探讨了模型如何学习对患者进行分类,以预测 12 小时内重症监护病房的死亡率或存活率。使用准确度统计数据和接收者操作特征曲线下面积来评估性能。结果:梯度提升树的接收者操作特征曲线下面积为 0.89,而逻辑回归的曲线下面积为 0.806。梯度提升树的准确度为 0.814,而逻辑回归的准确度为 0.782。梯度提升树的诊断比值为 17.823,而逻辑回归的诊断比值为 9.254。梯度提升树的 Cohen's kappa、F 测量值、Matthews 相关系数和显著性更高。结论:梯度提升树的判别能力非常出色。在重症监护病房死亡率预测方面,梯度提升树的表现优于逻辑回归。在所研究的不平衡数据集中,梯度提升树的高诊断比值和显著性值非常重要。
建议引用:Adekunle, Ibrahim Ayoade;Maku, Olukayode Emmanuel;Williams, Tolulope O.;Gbagidi, Judith;Ajike, Emmanuel O. (2023):非洲的自然资源禀赋和增长动态:面板协整回归证据,AGDI 工作论文,编号 WP/23/015,非洲治理与发展研究所 (AGDI),雅温得