Helmholtz协会RI的高级工作组已开发出这一贡献,作为即将到来的欧盟研究与创新2028-2034的欧盟框架计划的投入。Helmholtz对欧洲在研究方面的合作的承诺是由世界领先的大规模研究基础设施(RI)的运营所支持的。这些设施的范围从X射线,中子和离子源到超级计算机,现场观测器,研究船,飞机和卫星。此外,Helmholtz参与了几个欧洲分布式研究基础设施。我们的RI免费向国家和国际学术用户免费开放。访问是基于卓越的,通过同行评审的建议确定。此外,我们的RI构成了培训下一代研究人员,工程师和数据管家的中心枢纽。为了跟上科学的进步,我们的中心定期评估建造新RI的需求。可以在https://go.fzj.de/dj2mc上访问RI的最新Helmholtz路线图。在Helmholtz,我们认为RI的特定计划部分具有FP10内足够稳定的资金(具有计划委员会的专用配置),以及欧洲需要有效的协调。这是应对美国和亚洲日益增长的竞争,吸引国际人才到欧洲的前提,以加强植根于在技术最前沿使用RI的有效研究合作,并在所有研究领域充分利用RI的创新潜力。FP10中的专用RI程序:
其中 S(f)=−Rdxf(x)lnf(x) 是微分熵。如今,许多熵不确定性关系已得到证明和研究,例如用 Shannon 熵表示的具有离散谱可观测量的 Maassen-Uffink 熵不确定性关系[11-14],用互信息表示的信息排斥原理[15-17],Rényi 熵[13,18],Wehrl 熵[19,20],在存在(量子)记忆的情况下用条件熵表示的不确定性[14,21-24],以量化能量和时间之间的不确定性[25],或在更一般的互补算子代数设置中[26-28]。此外,离散变量和连续变量两种不同情况已在 [29, 30] 中统一。在本文中,我们将熵不确定性的概念扩展到标量量子场论,我们的动机有三方面。首先,信息论的观点已导致对量子场论的许多见解,最突出的是在纠缠[31-33]、热化[34-36]和黑洞物理[37-39]的背景下。由于不确定性原理是每个自然界量子理论的核心,因此严格的量子场的熵公式对于更深入地理解量子场论至关重要。其次,不确定性关系对于见证纠缠起着重要作用,特别是对于连续变量量子系统。除了 Simon [40] 和 Duan 等人提出的著名的二阶不可分离性标准之外。 [41] ,存在基于熵不确定关系的更强的熵标准 [42–44] 。此外,熵不确定关系可用于制定转向不等式 [45,46] ,或者通过包括(量子)记忆 [24] ,可以推导出纠缠度量的界限 [47] 。有关熵标准的实验应用,请参见 [45,47] 。
几十年来,太空和太空系统的军事用途 4 一直是当代战争不可分割的一部分。例如,武装部队依靠卫星导航系统实现精确导航和瞄准,依靠卫星实现全球通信(包括指挥和控制),依靠天基监测系统提前发出导弹袭击、监视和侦察的警告。随着太空系统在军事行动中的作用不断增加,这些系统在武装冲突中成为目标的可能性也在增加,无论是地面部分、太空部分还是两者之间的任何连接。对太空系统的潜在威胁包括电子战、网络作战、定向能攻击以及使用轨道和地面反卫星武器。必须强调的是,国家使用武力的任何行为——无论是通过动能还是非动能手段,使用太空和/或地面武器系统——都受《联合国宪章》和习惯国际法相关规则的约束,特别是禁止威胁或使用武力的规定。国际争端必须以和平方式解决,无论是在外层空间还是在所有其他领域。武装冲突期间在外层空间或与外层空间有关的军事行动 5 可能会对地球上的平民产生重大影响,因为空间系统所实现的技术渗透到了平民生活的方方面面,因此对空间系统的攻击可能造成的后果成为人道主义关切的问题。 6 例如,医疗保健、交通、通信、能源和贸易所需的民用基础设施越来越依赖于空间系统。空间物体——特别是气象、通信、导航和地球观测/成像卫星——也为人道主义工作的每个阶段做出贡献,从需求评估到紧急救援,从早期恢复到灾难和冲突风险降低。然而,许多这些民用卫星或其部分有效载荷也可能为武装部队服务,因此具有双重用途性质,这可能使它们成为军事目标。 7 另一个日益令人担忧的问题是空间垃圾。鉴于其飞行速度、位置和持续时间,碎片有可能损坏支持地球上安全关键的民用活动和基本民用服务的其他空间物体。
在量子信息处理与计算中,凸结构在量子态、量子测量和量子信道的集合中起着重要作用。一个典型的凸结构问题是量子态鉴别,它从一组给定的量子态 {| Ψ i ⟩} ni =1 中区分出一个量子态,其中先验概率 pi 满足 ∑ nipi = 1,参见[1–4]。最近,[5–8] 考虑了不可用量子态到可用状态集合的最佳近似问题。对于给定状态 ρ,问题改写为从 {| Ψ i ⟩} ni =1 中寻找最难区分的状态,使得 ρ 与凸集 ∑ nipi | Ψ i ⟩⟨ Ψ i | 之间的距离最小[7],该问题的解决有利于可用量子资源的选择[9–11]。与量子相干性和量子纠缠的距离测度的选择类似,我们在这里采用迹范数作为距离的测度[12–18]。
抽象的环境:适当的水合对于最佳认知功能很重要,因为它在神经传导性中起着重要作用。未能消耗足够的水会导致认知和神经功能的恶化,而脱水是妄想的危险因素。目的:本研究评估了重症患者的水合状况与认知功能之间的关系。方法:该研究使用了描述性的相关研究设计,并在Ain Shams University Hospitals的医疗重症监护病房I和II中进行。选择了86名重症患者的目的样本。使用了四个工具:患者的水合状态物理评估,小精神状态检查,运动活动评估量表和重症监护ir妄筛查清单。结果:澄清说,有46.5%的研究患者患有尿液,有30.2%的患者脱水,在入院当天有23.3%的水过水。关于认知功能,有29.1%的研究患者没有认知障碍,34.9%的认知障碍有轻度的认知障碍,36%的患者患有严重的认知障碍,53.5%的人在入院当天患有ir妄。在四个评估中,水合总得分与认知功能的总得分之间存在统计学意义的负相关。结论:当前的研究得出结论,在重症患者中,水合状态与认知功能之间存在统计学意义的负相关。建议将简单的评估工具(包括重症监护委员会筛查清单)整合到常规评估格式中或重病患者的评估流程表中。针对重症监护护士进行培训计划,以照顾遇到水合和认知问题的重症患者,以使他们保持最新的经验,知识和基于证据的实践,与照顾这组患者有关。
摘要本文探讨了国家在违反涉及人工智能技术(AI)技术的国际法方面可能承担责任的条件和方式。虽然如何归因和分配错误行为的责任的问题是AI的核心当代挑战之一,但根据国际法,国家责任的观点仍然相对毫无疑问。此外,大多数学术和政策辩论都集中在自动武器系统(AWS)提出的问题上,而没有对AI在军事领域中其他潜在应用提出的问题非常关注。本文对与军事AI有关的国家责任进行了全面分析。它讨论了国家对AI支持的军事技术的不法使用的责任,以及在部署之前的行为归因以及国家责任的问题,即未能确保在发展或收购阶段将AI系统遵守AI系统具有国际法。此外,这可能是针对其他州或私人参与者的行为而产生的。
摘要。变形金刚在电能的分布中起着关键作用,尤其是在电子设备中。负载电阻显着影响变压器效率。本研究采用了一种实验方法,目的是评估实验数据分析和理论计算之间的一致性。The experimental setup involves testing a step-up transformer characterized by the following primary coil specifications: N p (number of turns) = 500, r p (resistance) = 2.5 Ω, L p (self-inductance) = 9 mH, and secondary coil specifications: N s (number of turns) = 1000, r s (resistance) = 9.5 Ω, L s (self-inductance) = 36 mH.载荷电阻(R)在10至500Ω的范围内变化。结果揭示了变压器效率的逐步提高,随着载荷的增加,效率高达300Ω,此后效率会下降。在降低变压器的情况下,具有与升级变体相同的规格,效率显示出类似的增强模式,载荷电阻最高为80Ω,超过它会减小。此外,渐进式变压器的根平方误差(RMSE)为0.0012,R-square(R 2)值为0.99。同样,对于降低的变压器,RMSE寄存器为0.0060,伴随着R-Square(R 2)为0.99。这些发现肯定了所采用理论在阐明变压器效率和负载抗性之间的复杂相互作用方面的特殊性。
摘要 近几十年来,情境意识这一主题一直受到人们的关注。冻结探测方法,例如情境意识全局评估技术 (SAGAT),通常用于测量情境意识。本文旨在回顾 SAGAT 的有效性问题,并研究眼动是否是测量情境意识的有前途的替代方法。首先,我们概述了冻结探测方法的六个问题,例如冻结探测方法依赖于操作员能够记住然后明确回忆的内容。我们提出了一种基于人眼动与任务环境相关的情境意识操作化方法,以避免记忆中介和任务中断的不足。接下来,我们分析了实验数据,其中参与者 (N = 86) 被要求观察六个表盘的显示约 10 分钟,如果表盘指针超过阈值,则按下空格键。每隔 90 秒,屏幕就会变黑,参与者必须在纸上报告刻度盘的状态。我们评估了参与者的任务表现(检测到的阈值交叉百分比)与视觉采样分数(在阈值交叉期间瞥见的刻度盘百分比)和冻结探测分数的相关性。结果表明,视觉采样分数与阈值交叉水平(r = 0.31)和个人水平(r = 0.78)的任务表现相关。冻结探测分数较低,与任务表现的关联较弱。我们得出结论,SAGAT 概述的局限性阻碍了对情境意识的测量,情境意识可以通过与任务环境状态相关的眼球运动测量更有效地计算出来。目前的发现具有实用价值,因为眼动追踪摄像头和普适计算的进步减少了对 SAGAT 等中断性测试的需求。基于眼睛的情境意识是绩效的预测指标,其优势在于它可以通过实时反馈技术应用。
IQ-PARC 团队于 2020 年夏季通过教师专业发展 (TPD) 研讨会启动了将量子集成到 K-12 科学教育课程中的计划。到目前为止,一篇介绍量子密钥分发量子密码方法的杂志文章发表在《科学教师》(Akdemir 等人,2021 年)上。一年后,又组织了一次 TPD,向中学科学教师介绍量子随机数以及量子计算机与传统计算机的对比。该课程由物理和 K-12 教育专业的研究生开发,然后中学教师被邀请参加 2022 年夏季研讨会,讨论课程与印第安纳州 2016 年和 2022 年学术标准的兼容性。教师的反馈和建议被采纳以改进课程内容,以比较自然界放射性衰变过程与量子信息处理之间的随机性/概率概念。在研讨会结束时,教师能够创作由真实量子随机二进制数生成的整体艺术作品。所有会议成果都记录在云平台中,并将与那些有兴趣将量子概念融入其课程的人分享。
动机:预测可靠的药物-靶标相互作用 (DTI) 是计算机辅助药物设计和再利用中的一项关键任务。在这里,我们提出了一种基于数据融合的 DTI 预测新方法,该方法建立在 NXTfusion 库之上,通过将矩阵分解范式扩展到实体关系图上的非线性推理来推广它。结果:我们在五个数据集上对我们的方法进行了基准测试,并将我们的模型与最先进的方法进行了比较。我们的模型优于大多数现有方法,同时保留了预测 DTI 作为二元分类和实值药物-靶标亲和力回归的灵活性,可与为每个任务明确构建的模型相媲美。此外,我们的研究结果表明,DTI 方法的验证应该比之前一些研究中提出的更严格,更多地侧重于模拟真实的 DTI 设置,其中需要预测以前未见过的药物、蛋白质和药物-蛋白质对。这些设置正是将异构信息与我们的实体-关系数据融合方法集成的好处最明显的环境。