1 ST信息文档获取1995 2 nd +导航 +文档关系 +达到1998 3 rd +交易 +搜索垂直行业 +执行2002 4 th +合成 +生成模型 +浓缩模型 +凝结2023
精确肿瘤学的快速增长的领域通常致力于根据其临床表型和基因型来确定针对个体患者量身定制的个性化癌症治疗计划,其特征是分子分析[1]。实际上,确定这些治疗方法依赖于专家医学知识的独特组合,来自患者的整个临床和基因组病史的数据,以及在知识库,元知识基础和出版文献中记录的建议和最新发现。这最后一个组件是时间密集型,即使对于专家来说,也有很大的兴趣,即开发自动化的知识生成方法,目的是将文献变成(可行的)知识。最近的生成人工智能的激增引起了人们对高级大语模型(LLM)在生物医学上的应用,但是很少有组织拥有训练或调整这些模型的特定任务的资源。检索提示世代(RAG)[2]的技术可以代表一个中间立场,其中搁置的(开源或专有)LLM与Contextual 1相应的作者配对:Johns Hopkins University,Baltimore,Baltimore,MD,MD,United States,United States,美国MD;电子邮件:kkreime1@jhu.edu。
摘要。虽然生成建模在整个研究领域都普遍存在,但其整合到图像检索领域中仍然在很大程度上没有探索和不合理。在本文中,我们提出了一种新颖的方法,将图像检索重新构图为生成建模的变体,并采用了序列与序列模型。这种方法与当前研究中统一的趋势和谐相吻合,并提出了一个具有凝聚力的框架,可以进行端到端的差异搜索。这又通过直接优化技术促进了出色的性能。我们的模型的开发被称为IRGEN,它解决了将图像转换为简洁的语义单元序列的关键技术挑战,这对于实现效率有效的搜索至关重要。广泛的实验表明,与先前的竞争检索方法相比,我们的模型在三个广泛使用的图像检索基准和200万尺度的数据集上实现了最先进的性能,从而产生了很大的改善。此外,生成建模所促进的精确分数的显着激增列出了绕过重读阶段的潜力,在实际检索工作流程中,这在传统上是必不可少的。该代码可在https://github.com/yakt00/irgen上公开获取。
摘要 量子计算 ( QC ) 是计算科学中一个新兴领域,由于其具有开创性应用的潜力,吸引了大量研究兴趣。事实上,人们相信 QC 可以通过显著减少解决问题所需的时间来彻底改变我们解决非常复杂问题的方式。尽管 QC 仍处于发展的早期阶段,但已经可以使用量子计算机解决一些问题,从而开始看到它的潜力。因此,QuantumCLEF 实验室的目标是提高人们对 QC 的认识,并开发和评估新的 QC 算法,以解决在实现信息检索 ( IR ) 和推荐系统 ( RS ) 时通常面临的挑战。此外,这个实验室为人们提供了一个接触 QC 技术的好机会,由于这些技术还处于早期发展阶段,因此通常不易获得。在本文中,我们概述了 QuantumCLEF 的第一版,该实验室专注于应用量子退火 ( QA ),一种特定的 QC 范例,来解决两个任务:IR 和 RS 系统的特征选择,以及 IR 系统的聚类。共有 26 个团队注册了该实验室,最终有 7 个团队按照实验室指南成功提交了他们的运行。由于主题新颖,我们为参与者提供了许多示例和全面的材料,以帮助他们了解 QA 的工作原理以及如何编写量子退火程序。
在本文中,我们进行了一项研究,以利用 LLM 作为需要复杂数据分析的决策制定的解决方案。我们将决策问答定义为针对决策问题 Q、业务规则 R 和数据库 D 回答最佳决策 d best 的任务。由于没有可以检验决策问答的基准,我们提出了决策问答基准 DQA。它有两个场景,定位和建造,由两个视频游戏(Europa Universalis IV 和 Victoria 3)构建,它们的目标与决策问答几乎相同。为了有效地解决决策问答问题,我们还提出了一种新的 RAG 技术,称为迭代计划然后检索增强生成(PlanRAG)。我们基于 PlanRAG 的 LM 生成决策制定计划作为第一步,检索器生成数据分析查询作为第二步。所提出的方法在定位场景中比最先进的迭代 RAG 方法高出 15.8%,在建筑场景中比最先进的迭代 RAG 方法高出 7.4%。我们在 https://github.com/myeon9h/PlanRAG 上发布了我们的代码和基准。
在线错误信息的扩散对公众造成了重大威胁。虽然许多在线用户积极参与反对错误信息的战斗,但由于缺乏礼貌和支持事实,许多这样的回应都可以使人具有特色。作为解决方案,提出了文本生成方法,以自动产生反误导响应。尽管如此,存在的方法通常是端对端训练的,没有利用外部知识,从而产生了低等的文本质量和过度重复的重音。在本文中,我们提出了在线误导(RARG)的检索响应产生,该响应产生从科学来源收集支持证据,并根据证据产生反弥散性响应。尤其是我们的RARG由两个阶段组成:(1)收集证据,我们在其中设计了一个检索管道来检索和重读证据文件,该数据库使用数据库包含100万个学术文章; (2)响应产生,其中我们调整大型语言模型(LLM),以通过从人类反馈(RLHF)学习来生成基于证据的重音。我们提出了一种奖励功能,以最大程度地利用检索到的证据,同时保持生成的文本的质量,从而产生礼貌和事实的回应,这些反应明显驳斥了错误的信息。为了证明我们方法的有效性,我们研究了Covid-19的案例,并对内部和跨域数据集进行了广泛的实验,在该数据集中,RARG始终通过产生高质量的反透明信息响应来表现基准。
抽象生成人工智能(AI)在包括医学在内的各个领域都带来了革命性的创新。但是,它也表现出局限性。在响应中,检索增强的生成(RAG)提供了潜在的解决方案,从而使模型通过利用外部知识的检索来生成更准确的内容。随着生成AI的快速发展,RAG可以为将这种变革性技术与医疗应用联系起来铺平道路,并有望将股权,可靠性和个性化的创新带入医疗保健。主要文本生成人工智能(AI)最近在各个领域引起了广泛的关注,包括GPT 1,2和Llama 3-5系列文本生成; DALL-E 6用于图像生成;以及Sora 7的视频生成。在医学上,生成的AI在咨询,诊断,治疗,管理和教育中具有巨大的应用8,9。此外,生成AI的利用可以提高患者的卫生服务质量,同时减轻9-11临床医生的工作量。尽管如此,我们必须考虑生成AI模型的固有局限性,其中包括对训练数据12的偏见的敏感性,缺乏透明度,产生错误的内容,难以维持最新知识的可能性,以及其他8。例如,通过采用过时的基于种族的方程来估计肾功能13,大型语言模型被证明可以产生偏见的响应。在图像产生过程中,已经观察到与性别,肤色和地质文化因素有关的偏见14。同样,对于下游任务,例如回答和文本摘要,生成的内容通常是不一致的,并且缺乏验证的证据15。此外,由于其静态知识和无法访问外部数据,生成的AI模型无法为医生提供最新的临床建议或患者有效的个性化健康管理16。
自然的语言理解和产生已经取得了长足的进步,但持续的幻觉问题破坏了模型输出的可靠性。用外部知识来源(例如Wikipedia)介绍了检索提示的一代(RAG),提出了一种新颖而重要的方法来增强生成内容的事实准确性和连贯性。通过动态整合相关信息,Mistral模型表明了精度,回忆和整体响应质量的重大改进。本研究为减轻幻觉提供了一个强大的框架,为在关键应用程序中部署可靠的AI系统提供了宝贵的见解。全面的评估不足以提高抹布的潜力,以提高大语言模型的性能和可信度。