我们为生成AI的基于持续的基于时间分数的训练模型提出了一种新的增强学习(RL)公式,以生成样品,以最大程度地提高奖励函数,同时使生成的分布接近未知目标数据分布。与大多数现有研究不同,我们的公式不涉及验证模型的任何模型,用于噪声扰动数据分布的未知分数函数。我们提出了一个熵正则连续的RL问题,并表明最佳随机策略具有高斯分布,并具有已知的协方差矩阵。基于此结果,我们将高斯策略的平均值进行参数化,并开发一种参与者 - 批评类型(小)Q学习算法来解决RL问题。我们算法设计中的一个关键成分是通过比率估计器从未知分数函数中获取嘈杂的观测值。从数值上讲,我们通过将其性能与两种最先进的RL方法进行比较,从而显示了方法的效果。最后,我们讨论了我们的RL公式的扩展,并将差异模型的概率流量实现和有条件的扩散模型。
强化学习中的一个重要问题是设计了学会在环境中安全解决任务的代理。一个常见的解决方案是定义奖励功能的惩罚或到达不安全状态时要最小化的成本。但是,设计奖励或成本功能是非平凡的,并且可以随着问题的复杂性而增加。为了解决这个问题,我们调查了Minmax罚款的概念,这是不安全状态的最小罚款,导致安全最佳政策,无论任务奖励如何。我们通过考虑环境直径和可控性来得出该惩罚的上限和下限。此外,我们提出了一种简单的算法,以便在学习任务政策的同时估算这种罚款。我们的实验证明了这种方法在使代理能够在高维连续控制环境中学习安全策略的有效性。
通过增强神经性厌食症患者的奖赏反应来减少复发:VIBRANT(神经性厌食症治疗后促进康复的虚拟干预)试验
宝马:i3 2016-2021年、3系插电式混合动力汽车 2016+、5系PHEW 2017+、7系插电式混合动力汽车 2017+、i8 2014-2021年、X3 PHEV 2020-2021年、X5 插电式混合动力汽车 2016+、i4 2021+、i5 2024+、i7 2023+ 大众:e-Golf 2020、ID.4 2021+、Tiguan PHEV 2023+ 丰田:RAV4 Prime 2021+、Prius Prime 2022+、bZ4x 2023+ 雪佛兰:Bolt 2017+、Volt 2015-2019 起亚:EV6 2022+、EV9 2024+雷克萨斯: RX450h 2023+、RZ 2023+ 充电器:ChargePoint:Home Flex Wallbox Pulsar Plus Emporia 请注意,要将您的车辆连接到我们,您需要有效的联网服务订阅。如果您没有看到您的电动汽车或充电器,请联系我们!我们会将您添加到候补名单中,并在集成可用时与您联系。6. 如何注册该计划?
多目标加固学习(MORL)方法通过学习最大化的政策来解决现实世界中的问题,以不同的用户偏好加权。典型方法假定目标在整个代理人的寿命中都没有变化。,在某些现实情况下,代理商可能会遇到动态改变学习的方法,即在不同的学习阶段,不同的矢量值奖励功能。在概率公式或算法设计中尚未考虑这个发展目标的问题。为了解决这个问题,我们首次将设置作为连续的MORL(CMORL)问题,这是为了通过学习过程的目标发展。随后,我们提出了通过Re Ward Model Re re Hearsal(Cor E 3)学习的c ontinual多O型信息,从而使动态代理网络不合转,以快速适应新目标。此外,我们开发了一种奖励模型彩排技术,以恢复以前目标的重新信号,从而减轻灾难性的遗忘。在四个CMORL基准测试基准上进行的实验展示了Cor E 3有效地学习满足所有遇到的目标的不同偏好的政策,并以171%的态度表现出最佳的基线,突显了Cor E 3的能力,可以处理具有渐进目标的情况。
基于大型语言模型(LLM)基于人类偏好的细微调整已被证明可以增强其能力和安全行为。但是,在与安全相关的情况下,没有对人类注释的精确说明,收集的数据可能会导致模型过于谨慎,或者以不良的风格做出反应,例如是判断力。另外,随着模型功能和使用模式的发展,可能需要添加或重新标记的数据来修改安全行为。我们提出了一种利用AI反馈的新型偏好建模方法,仅需要少量的人类数据。我们的方法,基于规则的奖励(RBR),使用了所需或不希望行为的规则集合(例如拒绝不应与LLM分级器一起进行判断。与使用AI反馈的先前方法相比,我们的方法使用了直接在RL培训中的细粒度,可组合,LLM分级的几个提示作为奖励,从而获得更大的控制,准确性和易于更新。我们表明RBR是一种有效的训练方法,与91.7的人为反馈基线相比,F1得分为97.1,从而通过更好的平衡有用性和安全性,导致了更高的安全行为精度。
摘要。使用给定的重新函数优化文本对图像扩散模型是一个重要但毫无争议的研究领域。在这项研究中,我们提出了深度奖励调整(DRTUNE),该算法直接监督文本到图像扩散模型的最终输出图像,并通过迭代采样过程向输入噪声进行后退。我们发现,采样过程中的较早步骤对于低水平的奖励至关重要,并且可以通过停止denoing net-work-work-work-work输入的梯度来有效地实现深层监督。Drtune在各种奖励模型上进行了广泛的评估。它始终优于其他算法,尤其是对于所有浅层监督方法失败的低级控制信号。此外,我们通过DRTUNE微调稳定扩散XL 1.0(SDXL 1.0)模型,以优化人类偏好得分v2.1,从而导致有利的扩散XL 1.0(FDXL 1.0)模型。FDXL 1.0显着提高了图像质量,并且与Midjourney v5.2相比,质量可比。5
几个世纪以来,人类一直试图了解智力及其相关的机制,这些机制推动了我们的思维方式。有些人假设有不同类型的能力需要不同的信号或目标,包括学习,感知,社会智力,概括和模仿,但其他人则建议通过反复试验和错误学习以最大程度地提高奖励,这可以帮助发展包含所有这些能力的能力。在本文中,我们认为,尽管最大化奖励是发展各种能力范围的核心,但我们必须重新构架这些奖励的方式和制定这些奖励的方式,因为在增强学习中使用奖励的常规方法可能是令人难以置信的,并且在各种环境中都表现不佳,包括稀疏环境和嘈杂的奖励条件。我们建议需要对这些奖励进行改革,以纳入i)不确定性的不同概念,ii)人类偏好,iii)嵌套或混合的组成,iv)非平稳性,并说明v)无需奖励的情况。我们建议这样做可以使更强大的强化学习者成为迈向人工通用情报的一步。