Spiral ® LP(低调)刚性卷帘门具有与其他 Rytec Spiral ® 系列高速门相同的耐用性和质量,但采用低调侧柱和净空配置,从而减少了间隙。缩小的外形使 Spiral LP 能够比其他型号更适合在通常使用传统分段式和卷帘式钢门的地方安装。停车场、商业和其他需要在有限空间内保证安全的建筑物现在可以充分受益于高性能门的功能和速度。特点包括耐用、坚固的铝板条结构和橡胶密封条,可提供紧密的密封性和对环境条件的适应性。
出生时,婴儿的头部会暂时变形,以便通过狭窄的产道。出生后,这种灵活性就不再需要了,而是需要一种刚性状态来保护敏感的大脑,因此头骨的材料性质会发生变化,将头骨闭合为刚性骨骼。同样,可变刚度组件对于实现变形机器人和仿生学也具有重要意义。[1,2] 在医学和组织工程中,可变刚度也具有根本性的重要性,尤其是在与周围微环境相互作用时。例如,可以使用柔顺水凝胶和支架来促进手术期间的插入和适应,之后移植的材料会变硬以重建受伤硬组织的功能和机械性能。[2,3]
先进的柔性电子器件和软体机器人需要开发和实施柔性功能材料。磁电 (ME) 氧化物材料可以将磁输入转换为电输出,反之亦然,使其成为先进传感、驱动、数据存储和通信的绝佳候选材料。然而,由于其易碎性质,它们的应用仅限于刚性设备。在这里,我们报告了柔性 ME 氧化物复合材料 (BaTiO 3 /CoFe 2 O 4 ) 薄膜纳米结构,它可以转移到可拉伸基底上,例如聚二甲基硅氧烷 (PDMS)。与刚性块体材料相比,这些陶瓷纳米结构表现出柔性行为,并通过机械拉伸表现出可逆可调的 ME 耦合。我们相信我们的研究可以为将陶瓷 ME 复合材料集成到柔性电子器件和软体机器人设备中开辟新途径。
相应地,强相互作用的金属位点是许多多核金属蛋白(如血蓝蛋白、[1,2] 血红蛋白、[3] 超氧化物歧化酶、[4] 一氧化碳脱氢酶 [5] 和细胞色素 c 氧化酶)独特催化活性的基础。[6] 为了进一步了解此类复合物独特的配位化学,理想情况下需要一个刚性分子系统,该系统可以调节不同金属中心之间的距离,而不会通过显著改变配体场来影响它们。然后,可以通过刚性框架的轻微变化来改变金属中心之间的相互作用,特别是那些产生协同催化效应的相互作用。在这种情况下,一个感兴趣的系统是共价连接的二聚卟啉金属复合物,它可以通过系统的结构变化进行调节,并且其协同性质可以与相应组成单体的协同性质进行比较。
1977 年至 1990 年,Walden 与墨西哥飞艇制造公司 SPACIAL S.A. 的创始人 Mario Sánchez-Roldan 合作,设计和开发了一系列采用透镜状刚性测地线空间框架船体的飞艇。合作成果包括小尺寸 XEM-4 刚性透镜状飞艇演示器和全尺寸 SPACIAL MLA-32-B,后者于 1989 年 6 月首次飞行,成为 50 年来第一艘现代载人刚性飞艇。此次合作还验证了 Walden 的测地线船体设计规范,该规范用于 LTAS 飞艇设计。1997 年,该公司获得了第一批投资者,公司名称更改为 LTAS / CAMBOT LLC,以反映他们开发远程控制高空平台 (HAP)(称为 CAMBOT)的计划。Robert Ellingwood 成为该公司的总裁。2003 年,该公司更名为 LTAS Holdings LLC 和 LTAS International LLC (LTASI)。LTAS Holdings 是 Michael Walden 专利的受让人,并授权使用该知识产权 (IP)。LTASI 是 IP 应用的被许可人。此外,2003 年,一群外国投资者提供资金开发和建造大型 DCB 原型飞艇,最初打算将其作为 30-XB / 技术演示器,并被简单地指定为 TD1,后来被指定为 TD2。Michael Walden 于 2005 年离开 LTAS Holdings 和 LTASI。当时,LTAS 公司计划开发基于 TD2 设计的 New Frontier DCB 飞艇系列。这些公司于
摘要:本文介绍了模仿Cownose Ray的生物启发机器人的设计和实验测试。这些鱼的游泳是通过移动大小的胸膜,产生了一个波浪,使周围水向后推,以便由于势头保护而向前推动了鱼。受这些动物启发的机器人具有刚性的中央机构,住房电动机,电池和电子设备,以及由硅橡胶制成的柔软的胸膜。每个人都由伺服电机驱动链路在前沿内部的链路进行驱动,并且由于限制本身的灵活性,行动波被繁殖。除了胸膜外,还存在两个小的刚性尾部,以提高机器人的可操作性。机器人已经设计,建造和测试了水下,实验表明,运动原理是有效的,并且机器人能够向前游泳,左右转弯,并进行旋转或潜水手术。
先进的柔性电子器件和软体机器人需要开发和实施柔性功能材料。磁电 (ME) 氧化物材料可以将磁输入转换为电输出,反之亦然,使其成为先进传感、驱动、数据存储和通信的绝佳候选材料。然而,由于其易碎性质,它们的应用仅限于刚性设备。在这里,我们报告了柔性 ME 氧化物复合材料 (BaTiO 3 /CoFe 2 O 4 ) 薄膜纳米结构,它可以转移到可拉伸基底上,例如聚二甲基硅氧烷 (PDMS)。与刚性块体材料相比,这些陶瓷纳米结构表现出柔性行为,并通过机械拉伸表现出可逆可调的 ME 耦合。我们相信我们的研究可以为将陶瓷 ME 复合材料集成到柔性电子器件和软体机器人设备中开辟新途径。
