1。完成Sphero的Mars活动使命。2。信号从地球到火星的时间为5-20分钟(取决于行星位置)。因此,火星的航天器需要自动操作。3。让学生在任务笔记本中画出障碍课程的照片。鼓励他们标记检查点,测量它们之间的距离,然后写下检查点之间旅行所需的标题。4。鼓励学生制定最佳代码,测试然后完善。尝试避免“反复试验”编码。5。一旦您到达最终检查点,请使用退出程序块(紫色)结束或停止程序。6。通过让学生在词汇表中定义术语来结束。
我们的全球伙伴关系延伸到太空,美国和日本正在引领探索太阳系和重返月球的道路。今天,我们欢迎签署《月球表面探索实施协议》,根据该协议,日本计划提供并维持加压月球车的运行,而美国计划在未来的阿尔特弥斯任务中为日本分配两次宇航员登月飞行机会。两国领导人宣布了一个共同目标,即假设实现重要基准,日本国民将成为未来阿尔特弥斯任务中第一位登陆月球的非美国宇航员。
ROVER驾驶学院计划是一项令人着迷的教育计划,专为6 - 9年级的学生设计。它对月球科学和太空任务进行了深入的探索,涵盖了各种令人兴奋的主题,例如月球地质,火山口形成,月球阶段,潮汐锁定,太空旅行,月球登陆和罗佛行动。该计划由多个课程组成,每个课程都有一个独特的主题,使学生能够对这些主题有全面的了解。流浪汉驾驶学院的亮点是学生积极参与学习经验的机会,在该学习体验中,他们成为在模拟的月球环境中经营着真正的月球漫游器的团队的一部分。
摘要:将于2030年左右建立的国际月球研究站,将为月球漫游器提供机器人武器作为建筑商。建筑需要月球土壤和月球漫游者,为此,由于短暂的一天,尤其是在南极附近,漫游者必须在有限的时间内遇到不同的航路点,而不会在有限的时间内遇到障碍。传统的计划方法,例如从地面上载指令,几乎无法以高效的效率同时处理许多流浪者。因此,我们提出了一种基于深度强化学习的新的协作路径规划方法,在该方法中,人工电位领域的目标和障碍都证明了启发式方法。的环境是随机生成的,在创建大小障碍和不同的航路点以收集资源,训练深厚的增强学习代理以提出行动,并带领流浪者在没有障碍,完成漫游者的任务并达到不同目标的情况下移动。在每个步骤中,由障碍物和其他流浪者创造的人工潜力领域都会影响流动站的动作选择。人工潜力领域的信息将转变为有助于保持距离和安全性的深度加强学习中的奖励。实验表明,我们的方法可以引导流浪者更安全地移动,而不会变成附近的大障碍或与其他流浪者发生碰撞,并且与具有改进的避免障碍物方法的多代理A-Star路径计划算法相比,消耗的能量更少。
1近几十年来,由于技术和科学的进步以及人类扩展到外太空的目标,对月球的太空任务变得无关紧要。随着太空机构和私人秘书的兴趣日益增长,需要使用流浪者来探索更多敌对和未开发的环境,例如位于月球远侧或南极的环境。然而,在这种不利地形中运营的挑战显着,尤其是在识别可能对任务构成风险的资源和障碍(如岩石或地层)时。一个小错误,例如与未发现的岩石发生碰撞,不仅会损害流动站的完整性,而且会损害整个任务。传统上,流动站的监视和远程操作是基于对地形的2D图像的解释以及各种流动站参数和环境数据的可视化[6]。但是,根据场景,该系统可能无法提供足够的细节或直觉来防止事故或准确识别感兴趣的对象。在这种情况下,建议为流浪者配备先进的技术,以确保未来的任务中的安全性和成功,旨在监视和控制距离更近距离的流浪者,例如,在月球网关或月球基地[1,3],延迟将比地球较低。
本文介绍了一种进行全球本地化的新型船上方法,其中许多已经成功地证明了毅力。我们的概括技术使用修改后的人口普查转换,以实现稳健和实用的子米全球本地化精度,其性能与人为指导的本地化相匹配,从前两年半的任务中,平均不到0.5米以内,没有异常值。我们使用安装在毅力漫游器中的Ingenuity直升机基站上的快速处理器来执行本地化。它最初是为了与创造力进行协调交流。这项工作开发了界面和缓解辐射方法,使其可以用作Rover的协调员。该系统旨在限制操作的影响,并且不需要每日投入到Rover操作员,而不是是否执行全局本地化,但如果需要,也允许战略配置选项。我们讨论了从开发和部署这项新技术在飞行任务中所汲取的经验教训,并描述全球本地化如何增加科学回报并改变行星移动机器人的导航方式。
摘要 - 进入极端地形,例如洞穴或陨石坑,是未来行星探索机器人的关键挑战。许多实验机器人系统要么使用创新的运动概念或精心制作的任务设计来探索更具挑战地形。但是,这需要高度专业的任务特定机器人设计,从而限制了机器人一般应用的范围。我们通过使现有的漫游者系统团队将轨迹探索作为额外的机会任务任务来调查另一种方法。Rovers在一个束缚的Abseiling操作中进行了合作,从而增强了机器人团队一名成员的运动能力。我们使用我们的两个行星漫游原型在一般多功能多机器人月亮模拟任务的范围内进行火山口探索。在本文中,我们首先概述了对流动站系统的设计和修改,并描述了实验的一般部分自治设置,包括用于挂接系绳的机器人合作,并将其挂入火山口。第二,我们在火山Mt.ETNA,意大利,2022年。 在现场,流浪者成功地进入了甲壳虫小火山口,这是宽度约150 m,深度约为30 m,其陡峭的侧面部分紧凑,部分宽松且部分松散的火山土壤。 该实验表明协作操纵对束缚两个流浪者的可行性。 还显示出由于绞车而显示出增强的漫游动力,从而实现了安全的火山口探索。ETNA,意大利,2022年。在现场,流浪者成功地进入了甲壳虫小火山口,这是宽度约150 m,深度约为30 m,其陡峭的侧面部分紧凑,部分宽松且部分松散的火山土壤。该实验表明协作操纵对束缚两个流浪者的可行性。还显示出由于绞车而显示出增强的漫游动力,从而实现了安全的火山口探索。我们终于讨论了从该实验中学到的经验教训以及其余的实施步骤,以实现当地自主的火山口探索。
MMX(火星卫星探测)是日本宇宙航空研究开发机构 (JAXA)、法国国家空间研究中心 (CNES) 和德国航空航天中心 (DLR) 的机器人采样返回任务,计划于 2024 年发射。该任务旨在解答火卫一和火卫二的起源问题,这也有助于了解太阳系早期的物质运输,以及水是如何被带到地球的。除了负责采样和样品返回地球的 JAXA MMX 母舰外,CNES 和 DLR 还建造了一辆小型火星车,用于降落在火卫一上进行现场测量,类似于龙宫上的 MASCOT(移动小行星表面侦察车)。MMX 火星车是一个四轮驱动的自主系统,尺寸为 41 厘米 x 37 厘米 x 30 厘米,重约 25 公斤。火星车车身上集成了多种科学仪器和摄像机。火星车车身呈矩形盒状。侧面连接着四条腿,每条腿上有一个轮子。当火星车与母舰分离时,腿会折叠在一起,放在火星车车身的侧面。当火星车被动着陆(没有降落伞或制动火箭)在火卫一上时,腿会自动移动,使火星车保持直立状态。火卫一的一个白天相当于 7.65 个地球小时,在为期三个月的总任务时间内,会产生大约 300 个极端温度循环。这些循环和昼夜之间较大的表面温度跨度是火星车的主要设计驱动因素。本文详细介绍了 MMX 火星车运动子系统的开发
太空探索的未来将利用多代理系统的力量。它是低地球轨道中的卫星星座,还是一群零重力构造无人机,自主的多机构系统为执行大规模太空任务提供了下一步。漫游者群体尤其可以开始着重于月球表面探索的任务。群有可能产生高科学实用程序的回报。但是,尚未完全解决的许多设计和实施问题。该团项目旨在以流浪者群的形式探索多代理系统的设计和开发。该团漫游将作为一个案例研究,用于实施用于安全风险管理,需求形式化,运行时验证框架和其他相关验证工具集的研究工具。NASA AMES的强大软件工程(RSE)组有两个主要目标:(1)研究和开发用于改善安全 - 关键软件的验证和验证(V&V)的工具,以及(2)设计和设计和部署用于小型SAT太空飞行任务的飞行软件。理想情况下,这两个目标将相互补充。研究团队为任务开发人员开发工具,以提高软件质量,而任务开发人员在用例和所需功能上向研究团队提供直接反馈。实际上,设想的合作有局限性。飞行任务的日程限制通常不允许使用积极开发的工具进行原型制定和培训。安全限制(例如ITAR数据)阻止了混凝土用例的共享。为了克服这些障碍,RSE集团已经实施了一个名为Troupe的孵化器计划,该计划由四个自主流浪者组成,它们协调以绘制未知地形。最终的可交付方式将是绘制位于NASA AMES的漫游车场测试地面的漫游者的设计,开发和演示。演示任务允许开发太空飞行软件,同时集成了高级V&V工具,包括正式的模型检查器,数学声音静态分析仪和运行时安全性监控。虽然Troupe遵循NASA对软件开发的严格要求,但任务本身与工具开发人员和研究社区共享数据没有局限性。以这种方式,团队可以学习正在积极开发的新工具,并直接向研究工具开发人员提供反馈。