摘要 - 放松保证(RTA)是针对安全至关重要系统的设计时间档案,内部监视器在检测侵犯财产时作用。单纯形架构是RTA的一个实例,当不信任的控制器违反安全属性时,采取的动作是将整体系统控制给受信任的控制器。Simplex RTA正在成为一种方法,可以将AI/ML和其他未经验证的软件集成到飞机操作等安全至关重要的应用中。为此,美国测试和材料学会(ASTM)和NASA都发布了有关在此类系统中使用RTA的准则。在这项工作中扩展了Hybrid程序语言中简单RTA框架的正式验证。混合程序是包括离散和连续动态的程序,可用于建模复杂的网络物理系统。plaidypvs是一种能够在PVS定理供体中形式化混合程序的工具。plaidypvs可以验证一般的单纯形RTA框架,然后通过专门介绍混合程序的某些组件,在将未经信任的组件视为黑匣子的同时验证框架的实例。本文介绍了这种形式化的应用于无人飞机系统(UAS)操作的选择。正式验证过程提供了对系统的设计时间验证的好处,并且还对确定RTA框架“开关”属性的传感器采样率提供了要求。索引条款 - 跑步保证,混合程序,PLAIDYPVS,PVS
本研究调查了升温速率和充电状态 (SoC) 对软包锂离子电池热失控的影响。热失控是锂离子电池的一个关键安全问题,会导致灾难性的故障和潜在的危害。通过系统地改变升温速率和 SoC 水平,我们分析了热失控事件的起始温度、反应动力学和严重程度。我们的研究结果表明,较高的升温速率会加速热失控的发生,缩短反应时间并增加热事件的严重程度。此外,由于储能增加和电解质分解,SoC 水平较高的电池表现出较低的起始温度和更剧烈的热失控反应。这些结果强调了控制升温速率和 SoC 对提高锂离子电池系统安全性和稳定性的重要性。这为开发更安全的电池管理系统和热安全协议提供了宝贵的见解。
版权所有 © 2024 美洲开发银行 (IDB)。本作品受 Creative Commons 许可 CC BY 3.0 IGO ( https://creativecommons.org/licenses/by/3.0/igo/legalcode ) 约束。必须满足 URL 链接中所示的条款和条件,并且必须授予 IDB 相应的认可。根据上述许可的第 8 条,任何与根据此类许可产生的争议有关的调解均应按照 WIPO 调解规则进行。任何与使用 IDB 作品有关的争议,如果不能友好解决,应根据联合国国际贸易法委员会 (UNCITRAL) 规则提交仲裁。将 IDB 名称用于除署名以外的任何目的以及使用 IDB 徽标均应受 IDB 与用户之间单独书面许可协议的约束,并且不属于本许可的一部分。请注意,URL 链接包含作为本许可不可分割的一部分的条款和条件。本文表达的观点为作者的观点,并不一定反映美洲开发银行、其董事会或他们所代表的国家的观点。
在尖端和精益生产物流中,拖车火车对于有效的材料流都是必不可少的。他们提供需要的位置,e。 g。装配点,具有不同的负载载体和小批量的正确材料。这不仅使操作员不仅可以减少昂贵的生产物流领域,还可以减少库存水平,能源消耗以及造成事故的风险,多亏了交通较小。使用Liftrunner Tugger火车,仍然提供一个完全适应个人操作要求的拖车火车系统。静止的Liftrunner拖轮火车系统由牵引车(例如,来自产品线LTX或LXT的拖车拖拉机)以及不同的Tugger火车元件的灵活组合,例如LifTrunner B-,C-,C-和E-Frames(Trailers)(拖车)(拖车)和手推车(可滚动装载机)。凭借各种框架和手推车,可以根据需要组装拖曳火车,以便各种类型的商品在其特定的移交场所快速有效地到达小批量。LifTrunner框架的设计用于运输不同类型和尺寸的手推车,并开发和
2024 年 4 月 522 658 223 292 256 178 1,951 2,128 6,400 平均* 645 1,086 505 148 184 405 2,568 2,972 7,869 出发 -123 -428 -282 143 72 -227 -617 -844 -1,469 占平均值的百分比 81% 61% 44% 196% 139% 44% 76% 72% 81% 2024 年 5 月 942 1,397 300 118 261 532 3,018 3,550 9,950 平均* 1,088 1,287 337 158 192 349 3,063 3,412 11,282 出发 -146 110 -37 -40 69 183 -45 137 -1,331 占平均值的百分比 87% 109% 89% 75% 136% 152% 99% 104% 88% 2024 年 6 月 795 2,526 211 292 397 2,343 4,221 6,564 16,514 平均值* 1,628 2,752 443 161 189 345 5,173 5,518 16,799 出发 -833 -226 -231 130 209 1,998 -952 1,046 -285 占平均值的百分比 49% 92% 48% 181% 211% > 300% 82% 119% 98% 2024 年 7 月 321 852 156 104 262 1,141 1,693 2,834 19,348 平均值* 822 1,817 199 63 144 266 3,045 3,311 20,111 出发 -501 -966 -44 40 118 875 -1,352 -477 -762 占平均值的百分比 39% 47% 78% 164% 182% > 300% 56% 86% 96%
摘要 — 电池储能系统 (BESS) 是可再生能源集成度高的电力系统的重要资产,可通过控制为电网提供各种关键服务。本文介绍了使用具有电网跟踪 (GFL) 和电网形成 (GFM) 控制的兆瓦级 BESS 以及径流式 (ROR) 水电站恢复区域电力系统的实际经验。为了证明这一点,我们进行了集成实际 GFL 或 GFM 控制的 BESS 和负载组的电力硬件在环实验。本文给出的模拟和实验结果都展示了 GFL 或 GFM 控制的 BESS 在电力系统黑启动中的不同作用。结果为系统运营商提供了进一步的见解,了解 GFL 或 GFM 控制的 BESS 如何增强电网稳定性,以及如何在小容量 BESS 的支持下将 ROR 水电站转换为具有黑启动功能的装置。结果表明,与传统自下而下的方法相比,ROR 水电站与 BESS 相结合有潜力成为执行自下而上黑启动方案的使能要素之一,从而增强系统的弹性和稳健性。
水被视为人类在地球上存在的重要资源。为了模拟或优化各种水资源管理的水文数据,几种水文模型对于达到水资源管理和决策支持工具非常有用。降雨奔跑模型是一个定量原型,该原型在盆地尺度上解释了降雨量的相互作用。水文模型在各种水资源管理的能力方面具有特殊性。本文审查了适用于降雨奔跑建模的水文模型特有的五十(50)篇论文。它涉及评估和比较用于模拟降雨过程的不同水文模型转换为表面径流以提高用水效率。几种径流模型,例如水文工程中心 - 水文建模系统(HEC-HMS),土壤和水评估工具(SWAT),降水 - 运行建模系统(PRMS),可变浸润能力模型(VIC),列表侵蚀模型(LISEM),Mike地表水 - 地表水 - 地面水 - 地下水水平(Mike Sheef)和跑步型跑步。降雨跑模型用于不同应用的不同应用,以提高不同部门的用水效率。这是为了帮助建模目标。可以推断,HEC-HMS广泛用于对各种大小的流域中的降水过程进行建模,有助于洪水预测,储层运营以及水管理,以实现农业和城市用水效率。,通过检查各种水文模型的类型,通过评估每个模型在预测降雨数据中预测径流时的准确性和可靠性,通过确定众多地理环境的模型的适当性,应用程序,复杂性和可用性,通过评估模型的复杂性,以及限制了效率,通过确定众多地理环境的准确性和可用性来预测降雨数据的准确性和可靠性。降雨跑步过程进行了严格评估。SWAT用于评估土地管理实践(例如农作物旋转,灌溉,土地利用变化)对水资源的影响,包括产生径流和水质,从而优化农业的用水效率。PRM用于通过复杂的水文系统对水的运输进行建模,从而有助于流域管理和用水效率评估。总而言之,这项比较审查旨在指导水科学家,水文模型和水文工程师的使用者,以选择最合适的模型,以供其特定的建模需求,以实现可持续水资源管理。
近年来,锂离子电池安全性已成为最受关注的话题之一,它不仅是一个辩论主题,也是行业标准所要求的在所有市场应用中部署高可靠性电池电源系统的强制性要求。随着越来越多的电池进入市场并应用于各种应用,人们强烈希望提高电池安全性并减轻消费者的相关担忧,以加速电动汽车 (EV) 和其他设备的普及。电池安全的基石在于理解和减轻热失控 (TR)——一种以电池单元内温度和压力快速、自热和不可控地上升为特征的故障模式。这可能导致有毒气体排放、火灾或爆炸,对用户和制造商都构成严重风险。1,2 确定锂离子电池是否符合行业安全要求或评估 TR 事件的严重程度,需要对 TR 现象有深入的了解并进行相关实验。
TR 是电池系统最危险的安全隐患。TR 始于电池产生过多的热量,而这些热量无法充分消散,从而导致电极和电解质材料发生一系列放热反应。4 这些反应会产生气体,从而给电池加压。高温和高压共同作用,经常会导致电池外壳爆裂,5 导致热固体、熔融金属、蒸汽和剧毒气体剧烈喷出。6,7 此外,可燃喷出物(如 H 2 气体和蒸发的有机物)可能着火,从而加剧能量释放。8,9 电池化学成分、9 材料数量、充电状态 (SOC) 10 和老化历史 11 在很大程度上决定了 TR 期间释放的能量和材料。因此,虽然更高容量的化学成分和更高的电池电压会增加电池组的能量密度,但它们也会降低 TR 起始温度,从而增加能量释放。 6,8,9,12 挤压、穿透和外部短路都可能引发 TR,13-17 通常会导致多个电池同时进入 TR。此类事件非常复杂,难以缓解,通常需要有关电池环境的信息(例如,电池在电动汽车内的位置)才能设计出足够的安全措施。另一方面,单电池 TR 可以在电池组级别进行管理。