摘要本文在222-270 GHz的气体光谱中介绍了带有Bowtie-Antenna和硅透镜的发射器(TX)和一个接收器(RX),它们是在IHP的0.13 µM SIGE BICMOS技术中制造的。TX和RX使用两个集成的本地振荡器,用于222 - 256 GHz和250 - 270 GHz,可用于双波段操作。由于其大约27 dbi的定向性,带有硅透镜的单个集成的Bowtie-Antenna可以使TX的EIRP约为25 dbm,因此与先前报道的系统相比,2频段TX的EIRP更高。通过Y因子方法测量的Rx的双边噪声温度为20,000 K(18.5 dB噪声图)。气态甲醇的吸收光谱被用作用TX-和RX模块的气体光谱系统性能的量度。
摘要:目前,确保电网的正确功能在维持规范电压参数和本地线重载方面是一个重要问题。可再生能源(RES)的不可预测性,峰需求现象的发生以及超过智能网格中名义值高于名义值的电压水平,这使得在该最局面中进行进一步的研究。本文介绍了电力管理系统的仿真测试和实验室测试的结果,以减少网格负载过高或降低由于增加的造成物质的产生而导致的过高的网格电压值。该研究基于使用物联网(物联网)技术的智能设备(SA)的弹性能源管理(EEM)算法。算法的数据是从实现消息队列遥测传输(MQTT)协议的消息代理中获得的。在EEM算法中选择SA的功率设置的复杂性需要使用应用于NP难题类别的解决方案。为此,在EEM算法中使用了贪婪的随机自适应搜索程序(GRASP)。在弹性能量管理算法中,在电压爆发时,模拟和实验的提出的结果证实了通过弹性能量管理算法调节网络电压的可能性。
如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。 例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。 在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。 的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。 对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。 然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。 ,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。确认通过HAXPES测量获得的感兴趣材料的组成并计算出适当的相对灵敏因子(RSF),相同的膜以TOF-SIMS为特征。但是,例如Haxpes,SIP/SIGE层的次级离子质谱法(SIMS)表征通常由于p/ge含量的电离产量的非线性变化而受到基质效应。通过分析参考样本,遵循MCS 2+辅助离子或使用完整的光谱协议[2],可以通过分析参考样品来超越此限制。最后,计算了次级离子束的P和GE(Si)组成,并将其与X射线衍射确定的参考组成进行比较。还研究了测量值的可重复性和层氧化的影响。得出结论,通过将haxpes结果与TOF-SIM耦合,准确评估了层的深入组成和表面氧化物的厚度。
基于SI和SIGE的设备对量子电路缩放的潜力受到设备可变性的污染。每个设备都需要调整为操作条件,并且每个设备实现都需要一个不同的调整协议。我们证明,可以从使用相同算法的划痕中自动调整4门Si Finfet,5门GESI纳米线和7门GE/SIGE异质结构双量子点设备的调整。我们分别达到30、10和92分钟的调整时间。该算法还提供了这些设备中每个设备的参数空间景观的洞察力,从而可以对发现双重量子点状态的区域进行表征。这些结果表明,通过机器学习启用了用于调整量子设备的总体解决方案。
与臭氧剂量的 HfO 2 -Al 2 O 3 /SiGe 双层器件(图 2h)相比,臭氧剂量的 Al 2 O 3 -HfO 2 -Al 2 O 3 /SiGe
课程说明微电动设备和电路设计师长期以来一直在寻求结合带隙工程提供的卓越运输特性和设计灵活性(如在GAAS和INP等复合半导体中常规实践),以及高产量和较低的常规硅(SI)制造成本。随着介绍外延硅果(Sige)合金,这一梦想终于成为现实。SIGE异质结双极晶体管(SIGE HBT)是在SI材料系统中实现的第一个实用带段的实用设备。The first functional SiGe HBT was demonstrated in 1987, and the technology has matured rapidly, at present achieving a unity-gain cutoff frequency above 700 GHz, circuit delays below 2 picoseconds, and integration levels sufficient to realize a host of record-setting digital, analog, RF, mm-wave, and sub-mm-wave circuits.自然兼容,将SIGE HBT与最佳的SI CMO组成以形成SIGE HBT BICMOS技术,这显然适合于解决新兴的性能受限,高度集成的系统,目前正在商业和国防部门在全球范围内追求。
基于GE的集成光子回路过去10年中,基于锗(Ge)的光电元件得到了发展,拓展了硅(Si)光子回路的潜力。光电探测器、调制器和Ge-on-Si激光器已经在中红外区得到演示。Ge的主要优势在于它的透明窗口大,波长范围从1.8至14μm,并且与CMOS兼容。Ge和SiGe合金很快被视为开发集成光子元件的首选材料。厚Ge和SiGe层(高达40%的Ge)通常在工业外延集群工具中通过化学气相沉积在200mm和300mm Si(001)晶片上生长。关于Ge和SiGe生长的更多细节可以在参考文献[1]中找到。 SiGe 或绝缘体上的 Ge(如 SiN)晶片可从之前的外延中制造出来。在这种情况下,需要将两个晶片键合在一起:第一个晶片具有 Ge 或 SiGe 外延层,上面覆盖有 SiNx 层和薄 SiO 2 层,第二个晶片是氧化 Si 晶片。在 SiO 2 到 SiO 2 键合之后,起始
CEA-LETI的Vertatile Photonics平台提供了200毫米和300毫米CMOS兼容的过程,可利用行业前工业化设备的顶部。除了硅外,CEA-LETI还掌握了无定形SI,SIGE,GE和SIN层的整合和堆叠。因此,CEA-LETI现在提供了几个图片平台:•光子学SOI•超低损失SI 3 N 4•SIGE / SI•3-8 µm波长•GE / SIGE低损失8-12 µm波长CEA-LETI CEA-LETI不仅证明了IIII-V-Bonded bybond bybond bybondepie bynepie and epi-epi-epi-epi-epi-epi-ln的集成。新一代性能激光器,调节器和探测器的超导材料。
CEA-LETI的Vertatile Photonics平台提供了200毫米和300毫米CMOS兼容的过程,可利用行业前工业化设备的顶部。除了硅外,CEA-LETI还掌握了无定形SI,SIGE,GE和SIN层的整合和堆叠。因此,CEA-LETI现在提供了几个图片平台:•光子学SOI•超低损失SI 3 N 4•SIGE / SI•3-8 µm波长•GE / SIGE低损失8-12 µm波长CEA-LETI CEA-LETI不仅证明了IIII-V-Bonded bybond bybond bybondepie bynepie and epi-epi-epi-epi-epi-epi-ln的集成。新一代性能激光器,调节器和探测器的超导材料。
阿尔及利亚 Echahid Cheikh Larbi Tebessi 大学 (1)、阿尔及利亚 Mostefa Ben Boulaid-Batna 第二大学 (2)、法国艾克斯马赛大学 (3) doi:10.15199/48.2024.04.31 使用拉曼光谱和遗传算法优化退火后的 SiGe DPSi 异质结构,以增强材料特性和性能 摘要:在我们之前的调查中,我们通过拉曼光谱深入研究了双多孔硅 (DPSi) 上 SiGe 合金的复杂性,揭示了拉曼峰移、应力和多孔材料中 SiGe 合金中 Ge 浓度之间以前未知的联系。这项研究的突出特点在于其独特的方法——使用遗传算法比较结果。该方法对数据进行了全面的分析,增强了我们对其中复杂关系的理解。通过频率法验证,我们的结果为 DPSi 上的外延生长提供了宝贵的见解,为拉曼光谱、应力和合金成分之间错综复杂的相互作用提供了细致入微的视角。这些发现不仅有助于加深对 SiGe 合金的理解,还为 DPSi Streszczenie 等创新基板上的外延生长领域的进一步发展铺平了道路。 W naszym poprzednim badaniu zagłębiliśmy się w zawiłości stopów SiGe na podwójnie porowatym krzemie (DPSi) za pomocą spektroskopii Ramana, odkrywając nieznane wcześniej powiązania między拉玛纳 (Ramana) 和拉玛纳 (Ramana) 的产品均采用了 SiGe 和材料。 Cechą tego badania 开玩笑 odrębność podejścia — porównanie wyników z wykorzystaniem algorytmugenetycznego。方法是通过分析仪器来分析、分析和分析。 Nasze wyniki、potwierdzone methodą częstotliwości、dostarczają cennych informacji na temat wzrostu epitaksjalnego na DPSi、prezentując zniuansowaną perspektywę na skomplikowane wzajemne oddziaływanie między spektroskopią Ramana, naprężeniem i składem stopu。 Odkrycia te nie tylko przyczyniają się do lepszego zrozumienia stopów SiGe, ale także torują drogę do dalszych postępów w dziedzinie wzrostu epitaksjalnego na innowacyjnych podłożach, takich jak DPSi ( Optymalizacja 异质结构 DPSi wyżarzonych SiGe przy użyciu spektroskopii Ramana 和 algorytmu Genetycznego w celu uzyskania lepszej charakterystyki i wydajności materiałów ) 关键词:双多孔硅、拉曼光谱、遗传算法。关键词:多孔硅、光谱仪、算法。1. 简介 最近的技术进步凸显了减小器件尺寸和提高性能的重要性。因此,越来越需要控制结构中的应力并了解其来源。一种新兴且有前景的策略是采用柔性衬底,其中多孔硅 (PSi) 因其公认的灵活性而脱颖而出 [1, 5]。PSi 的柔韧性和柔韧性使其能够熟练地吸收 SiGe 异质外延膜引起的应力变化,这主要归功于其较高的孔密度。它与硅基微电子学的完美契合和高成本效益为将各种超轴系统(如 III-V 或 SiGe)整合到硅衬底上开辟了新的机会 [6, 7]。最近,双多孔硅 (DPSi) 已成为柔性衬底竞争中的突出候选者,特别是用于在 Si 上的异质系统(如 III-V 和 SiGe)的外延生长 [8]。双多孔硅 (DPSi) 结构由具有密封孔的超薄、原子级平坦上层和厚的、高度多孔的下层组成。然而,在该 DPSi 层上实现 SiGe 和 Ge 的低温外延的努力导致了不均匀外延层的形成,其特征是存在扩展缺陷。[9, 10]。然而,对 DPSi 层进行热处理会引起显著的形态变化,将小孔转变为大孔,同时产生拉伸应变,正如我们之前的研究 [1] 所记录的那样。这种伪衬底具有两个显着的特性:它具有高度的柔韧性和可承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统开辟了可能性。本研究深入探索退火 DPSi 作为应力模板层,通过分子束外延沉积高质量单晶 SiGe 层它具有高度的柔韧性,能够承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统提供了可能性。本研究深入探索了退火 DPSi 作为应力源模板层,通过分子束外延沉积高质量单晶 SiGe 层它具有高度的柔韧性,能够承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统提供了可能性。本研究深入探索了退火 DPSi 作为应力源模板层,通过分子束外延沉积高质量单晶 SiGe 层