光片(HILO)激发3,用DNA-Paint 6以下达到5 nm 4,5以下的横向定位精度(S SMLM)。但是,这是以有限的穿透深度为代价的,TIR <250 nm,而Hilo 7,8的视野降低了〜40×10 µm 2。SMLM也可以在共聚焦设置中实现,包括点扫描和旋转磁盘共聚焦(SDC),这使得更深的样品渗透9,使其比较成像组织样品。图像扫描显微镜(ISM)10通过像素重新分配将共聚焦显微镜11,12的空间分辨率增加一倍,并且在与SMLM结合使用时,SMLM最近达到了8 nm的S SMLM,尽管小FOV的小FOV为8×8 µm 2 13。为了提高采集速度和FOV尺寸,SDC在旋转盘上采用数百个螺旋针孔,并与摄像机而不是单点检测器相结合。SDC构型已适用于SMLM,使用DNA-PART 14,使用DNA-Origami样品使用DNA-Origami样品达到8 nm的平面定位精度和基础平面中的细胞22 nm。仍然,由于发射光被光盘阻断,由于兴奋强度降低,可实现的分辨率仍受到限制。在2015年,Azuma及其同事提出了具有光子光子重新分配(SDC-EPR)15的增强的SDC,这是一系列微胶片,以有效降低针孔尺寸并增加光子收集,以改善分辨率。这些微漏物收缩了焦点双重,将发射的光子引导回可能的起源点(图1a)。因此,这提出了一个问题:SDC-opr的表现能否优于当前的光学配置,克服渗透深度,视野和空间分辨率之间的权衡?In this Brief Communication, we show that SMLM on a SDC- OPR fluorescence microscope can achieve sub-2 nm localization precision in the basal plane and sub-10 nm up to 7 µm penetration depth within a FOV of 53 × 53 µm 2 using a commercially available SDC-OPR (CSU-W1 SoRA Nikon system).通过可视化,以前所未有的分辨率来强调SDC-OPR的功能,在果蝇的视觉想象盘的视网膜上皮中的附着力连接。
Abbelight,CNRS和Paris-Saclay大学于2024年2月2日星期五联手推进活生物体的成像,该公司的Abbelight专门研究显微镜检查和纳米镜检查解决方案,法国国家科学研究中心(CNRS),以及在纽约州立大学的专业人士的创建范围内,是由纳米科学研究中心(CNRS)和纳米研究。扩大规模的公司Abbelight,CNRS和Paris-Saclay大学最近通过启动联合实验室Nanolife加强了他们的合作伙伴关系。将Abbelight和Orsay Molecular Science研究所(ISMO 1)汇总在一起,联合实验室旨在通过一个主要的科学项目解决活细胞荧光纳米镜检查中的主要技术和科学挑战。Nanolife的客观借鉴了Ismo和Abbelight的能力来开发生物的成像,这在今天仍然有限。ISMO在常规和超分辨率荧光显微镜以及样品制备和相关数据处理方面已获得专业知识和丰富的专业知识。除了ISMO的科学专业知识外,Abbelight的超分辨率成像技术 - 单分子定位显微镜(SMLM),还将在改善观察生物体所需的时间分辨率方面发挥关键作用。SMLM是一种光学成像溶液,提供3D纳米空间分辨率,与电子显微镜相似。虽然SMLM的发明者于2014年获得诺贝尔化学奖,但该解决方案目前仍限于固定生物样品的成像,并提出了几个缺点。这些包括:从几分钟到几个小时不等的获取时间,这远非观察生物体所需的时间分辨率;特别是光毒性光激发样品,尤其是在长期获取时间;和无法穿透活细胞的免疫标记抗体附着的SMLM探针。Nanolife联合实验室的目的是应对这些挑战。该项目“将有助于提高我们对SMLM探针光闪烁过程的知识,以及涵盖整个价值链的新的SMLM仪器的开发,从样本制备到图像分析。Nanolife还将为SMLM纳米镜检查提供成为未来显微镜的机会,并巩固Abbelight作为SMLM纳米镜市场领导者的地位。新实验室还将允许ISMO在这个特定领域增强其卓越,声誉和专业知识,同时继续发展新知识。SMLM成像技术的发展将有助于生命科学的研究,以及包括癌症,遗传学,生物物理学,微生物学和神经科学在内的许多领域。“ CNRS非常高兴我们与Abbelight的关系随着时间的推移持续增长,因为该公司首次从CNRS共同经营的实验室中出现。创建纳米叶是一种提醒人们,为什么经济世界和公共研究必须保持紧密的联系。荧光纳米镜检查 -
SMLM可以进一步分为三个主要家族,具体取决于单个荧光分子分离的机制:(i)基于光激活/开关显微镜,包括光激活的定位显微镜(PALM),Sto-Chastic光学光学重建显微镜(Storm),Direct Storm(Distorm); (ii)动态标记显微镜,包括基于可逆结合的纳米级地形(油漆)成像的点积累,以及(iii)荧光终身分离显微镜。所有这些方法,基于不同的分离方法,都具有自己的优势,并且在生物学和材料科学方面都有用,如其他地方彻底综述。5–11中,由于各种样品中动态标记的实用性,油漆正在增长。从这个角度来看,我们旨在在油漆显微镜下对探针设计中的最新状态提供见解,并将工具箱扩展到DNA之外,以探针为探针。油漆的概念是基于以下前提:荧光探针旨在使用溶液自由地差异分子(图1,中间面板)。与目标结合后,它们被固定,并且单分子的荧光信号出现在摄像机上,可以通过拟合程序定位。作为探针的动力学确保解开,荧光信号再次旋转,直到新分子结合。随着探针的连续补充,它对光漂白不敏感,这是该方法的主要优势,而不是其他SMLM技术。这允许长时间的成像时间,从而具有更高的精度。此外,通过将多个探针与不同的染料相结合,
应将对应关系发给BSA(balpreet.singh.ahluwalia@uit.no)结构化照明显微镜(SIM),可在高速下对亚细胞结构进行实时细胞超分辨率成像。目前,Linear Sim使用自由空间光学器件以所需的光图形来照亮样品,但是这种布置容易错过一致性,并为显微镜增加了成本和复杂性。在这里,我们提出了一种基于光子芯片的替代2D SIM方法,其中显微镜中的常规玻璃样品载玻片被平面光子芯片所取代,该平面光子芯片既可以固定并照亮样品。光子芯片将SIM的光照明路径的足迹降低到约4x4 cm 2。芯片上的一系列光学波导以不同的角度创建了站立的干扰模式,从而通过evanevanevanecent磁场照亮了样品。高折射率氮化硅波导允许在成像空间分辨率中增强2.3倍,超过了SIM的通常2x极限。总而言之,CSIM提供了一种简单,稳定且负担得起的方法,用于在大型视野上执行2D超分辨率成像。光学显微镜的空间分辨率通过衍射有效地限制了可实现的分辨率横向约250 nm,而轴向为500 nm的1,2。超级分辨率荧光显微镜的出现(通常称为纳米镜检查)证明了欺骗衍射极限的能力,将显微镜的横向分辨率向下延伸到只有几个纳米3。因此,超分辨率成像的下一个飞跃可以通过增加纳米镜方法的吞吐量来实现。在现有的光学纳米镜检查方法4-8中,结构化照明显微镜(SIM)9,10对于大多数明亮的荧光团作品。,而不是在SIM中照亮样品,而是在SIM中照亮了正弦激发模式,可以照亮样品,并在摄像机上捕获荧光发射。通常使用样品平面上的两个或三个梁的干扰来生成正弦激发光。通过乘法在频率空间中代表卷积,混合了两个函数的空间频率,在样品平面上结合了照明和对象函数。以这种方式,由于频率下转换与所得荧光发射为Moiré边缘模式,因此在物镜的通过频带的通过频带下方可以提供高频,未解决的内容。要从Moiré模式中提取高频含量,需要三到五个相移的结构化照明才能改善沿一个轴的分辨率。对于各向同性分辨率,必须重复该过程的激发模式的3个方向(角度),对于2D(3D)SIM重构,总共有9(15)个图像。由于SIM只需要9(15 for 3d)图像即可在广泛的视野上创建一个超分辨率图像,因此此方法本质上是快速的,这使其成为实时细胞光学纳米镜检查的最流行方法之一。,尽管STED和SMLM方法在单个单元格的水平上提供了出色的图像,但是当需要许多细胞的高速图像以建立统计影响时,这些技术会遭受低吞吐量。在常规模拟中,照明和开发高分辨率方法,例如刺激激发耗竭(STED)显微镜技术4,5和单分子定位显微镜(SMLM)6-8,从而使分辨率降低到几十纳米量,在生命科学中发现了新的发现可能性。在现有的超分辨率显微镜技术中,SIM提供了最快的时间分辨率,并且与标准标签和低光毒性的兼容性SIM方法指向实际高通量纳米镜检查方向。为了充分利用快速SIM成像技术的实用性,可实现的空间分辨率,方法的吞吐量和SIM的系统复杂性需要改进。