心电图(ECG)信号提供了有关心脏状况的基本信息,并广泛用于诊断心血管疾病。可用铅上单个心跳的术语是用于监测心脏疾病的主要生物信号。但是,由于噪声和伪影,缺少的潜在客户以及缺乏带注释的数据,分析心跳形态可能会具有挑战性。生成模型,例如deoising扩散生成模型(DDMS),已被证明成功地生成复杂的数据。我们介绍了Beatdiff,这是一种针对多个铅心跳的形态量身定制的轻质DDM。然后,我们证明,使用Beatdiff作为先验,可以将许多重要的心电图下游任务作为贝叶斯反问题框架中的条件生成方法提出。我们提出了一种期望 - 最大化算法EM-Beatdiff,以在不进行微调的情况下解决此条件生成任务。我们通过多个任务说明了结果,例如去除ECG噪声和工件(基线徘徊,电极运动),从单个铅中重建12个LEAD ECG(用于智能手表实验的ECG重建),以及无需可解释的可解释的静音术检测。实验表明,对于本工作中考虑的问题,Beatdiff和Em-Beatdiff的组合优于SOTA方法。
摘要 - 促进感知的目的是通过利用附近连接的自动化车辆(CAV)的补充信息来实现整体感知的结构,从而赋予了更广泛的探测范围。尽管如此,如何合理地汇总自明观察仍然是一个开放的问题。在本文中,我们提出了一种新型的车辆对车辆感知框架 - 以基于TR ANSFORMER的CO Llaboration(COTR)称为V2VFormer。特别是。根据空间感知变压器(SAT)的位置相关性,它重新估算了特征的重要性,然后与通道的变压器(CWT)执行动态语义相互作用。,COTR是一个轻巧和插件的模块,可以将其无缝调整到带有可接受的计算开销的未货架3D检测器上。此外,通过各种驾驶条件进一步增强了大规模的合作感知数据集V2V-集合,从而为模型预处理提供了广泛的知识。定性和定量实验证明了我们提出的V2Vformer在模拟和现实世界情景中实现了最新的(SOTA)协作绩效,从而超过了所有对应方面的大量余量。我们希望这将推动未来网络自主驱动研究的进步。
自动癫痫发作检测对于癫痫诊断和治疗非常重要。用于癫痫检测的一种新兴方法,即立体电脑摄影(SEEG),可以提供详细的立体脑电波信息。但是,在临床场景中对SEEG进行建模将面临挑战,例如不同患者之间的巨大领域变化和不同大脑区域之间的急剧模式演变。在这项研究中,我们提出了一个基于P的基于P的模型,以解决这些挑战,以应对这些挑战。首先,我们设计了两个新型的自我监督任务,可以从丰富的Seeg数据中提取丰富的信息,同时保留从不同大脑区域记录的大脑信号之间的独特特征。然后提出了两种技术,通道背景减法和大脑区域增强,以有效解决域移位问题。广泛的实验表明,PPI在两个公共数据集和我们收集的一个现实世界中的临床数据集上的表现优于SOTA基准,这证明了PPI的有效性和实用性。最后,可视化分析说明了两种域概括技术的合理性。
摘要 - 自主驾驶有可能为更有效的未来移动性奠定基础,要求研究领域通过安全,可靠和透明的驾驶来建立信任。大语言模型(LLM)具有推理能力和自然语言的理解,具有作为可以与人类互动和为人类驾驶员设计的环境互动的自我运动计划的普遍决策者的潜力。尽管这条研究途径很有希望,但当前的自动驾驶方法通过结合3D空间接地以及LLMS的发展和语言能力来挑战。我们介绍了BEV-驱动程序,这是一种基于LLM的模型,用于Carla中的端到端闭环驾驶,它利用潜在的BEV功能作为感知输入。bevdriver包括一个BEV编码器,以有效地处理多视图图像和3D LiDAR点云。在一个共同的潜在空间中,BEV特征通过Q-前者传播,以与自然语言指示保持一致,并传递给LLM,该LLM预测和计划在考虑导航说明和关键场景的同时,可以精确的未来轨迹。在Langauto基准测试中,与SOTA方法相比,我们的模型在驾驶得分上的性能高达18.9%。
协作感知使每个代理人通过与其他代理人的传统消息交换来证明其感知能力。它固有地归结为感知和沟通成本之间的基本权衡。为了解决这个瓶颈问题,我们的核心思想是从两个关键方面优化协作序列:表示和选择。提出的基于密码的消息代表可以传输整数代码,而不是高维特征图。提出的信息填充消息选择优化了本地消息,以共同填充每个代理的信息需求,防止多个代理之间的信息溢出。通过对这两种设计进行介绍,我们提出了一种新颖的沟通效率协作感知系统,它大大提高了感知 - 交流权衡权衡,并且既包含了同性恋和异构协作环境。我们在现实世界数据集(DAIR-V2X)和新的仿真数据集OPV2VH+中评估了代码填充。结果表明,代码填充的表现超过了sota,其中2comm在dair-v2x/opv2vh+上具有1,333/1,206×较低的通信量。我们的代码可从https://github.com/phyllish/ codefilling获得。
摘要:准确、高效的自动脑肿瘤分割算法对临床实践具有重要意义。近年来,人们对使用卷积神经网络的自动分割算法产生了浓厚的兴趣。在本文中,我们提出了一种新型的分层多尺度分割网络 (HMNet),它包含一个高分辨率分支和并行的多分辨率分支。高分辨率分支可以跟踪脑肿瘤的空间细节,而多分辨率特征交换和融合使网络的感受野能够适应不同形状和大小的脑肿瘤。具体而言,为了克服昂贵的 3D 卷积造成的大量计算开销,我们提出了一个轻量级的条件通道加权块来减少 GPU 内存并提高 HMNet 的效率。我们还提出了一个轻量级的多分辨率特征融合 (LMRF) 模块,以进一步降低模型复杂度并减少特征图的冗余。我们在 BraTS 2020 数据集上运行测试,以确定所提出的网络的效果如何。 HMNet 对 ET、WT 和 TC 的骰子相似度系数分别为 0.781、0.901 和 0.823。在 BraTS 2020 数据集和其他两个数据集上进行的大量对比实验表明,我们提出的 HMNet 与 SOTA 方法相比取得了令人满意的性能。
基于图的模型已广泛应用于欺诈检测任务。由于图神经网络 (GNN) 的发展,最近的研究提出了许多基于同构或异构图的 GNN 欺诈检测器。这些工作利用现有的 GNN 并汇总邻域信息来学习节点嵌入,这依赖于邻居共享相似的上下文、特征和关系的假设。然而,欺诈者造成的不一致性问题很少被研究,即上下文不一致、特征不一致和关系不一致。在本文中,我们介绍了这些不一致性并设计了一个新的 GNN 框架 GraphConsis 来解决不一致问题:(1)对于上下文不一致,我们建议将上下文嵌入与节点特征相结合; (2) 针对特征不一致,我们设计了一个一致性评分来过滤不一致的邻居并生成相应的采样概率;(3) 针对关系不一致,我们学习与采样节点相关的关系注意权重。对四个数据集的实证分析表明,不一致问题在欺诈检测任务中至关重要。大量实验证明了 GraphConsis 的有效性。我们还发布了一个基于 GNN 的欺诈检测工具箱,其中包含 SOTA 模型的实现。代码可在 https://github.com/safe-graph/DGFraud 获得。
应用问题 SOTA 应用 1:卫星 ISAM A1Q1:如何分析 ISAM 架构的性能 [24–26, 47–49] A1Q2:如何战术性地规划和安排 ISAM 操作 [50–56] A1Q3:如何战略性地构建 ISAM 基础设施元素,如仓库和车辆 [54, 55, 57] 应用 2:多任务太空探索活动 A2Q1:如何分析物流战略的性能 [58–68] A2Q2:如何规划和安排多任务探索活动的任务 [35, 69–77] A2Q3:如何设计和确定探索车辆和资源基础设施技术的规模 [73, 78–81] A2Q4:如何应对发射延迟、基础设施性能等方面的不确定性 [82, 83] A2Q5:如何建立政府与商业参与者之间的关系[84–87] 应用 3:巨型卫星星座 A3Q1:如何发射和部署巨型星座 [88–90] A3Q2:如何分析系统性能并为星座分配在轨备件 [91–94] A3Q3:当需求发生变化时,如何灵活地重新配置卫星星座 [95, 96] A3Q4:如何管理大型星座的商业多利益相关方生态系统 [97–102]
超分辨率(SR)的长期挑战是如何在保持语义相干性的同时有效地增强低分辨率(LR)图像的高频细节。这在经常在低功率设备上部署的SR模型的实际应用中尤为重要。为了解决此问题,我们提出了一个具有多深度分支模块(MDBM)的创新不对称的SR架构。这些MDBM包含不同深度的分支,旨在同时有效地捕获高频和低频信息。MDBM的层次结构允许更深的分支在浅层分支的上下文指导下逐渐积累细粒的本地细节。我们使用特征图来可视化这个过程,并使用拟议的新型傅立叶光谱分析方法进一步证明了该设计的合理性和有效性。此外,我们的模型比现有分支网络在分支之间表现出更明显的光谱差异。这表明MDBM降低了冗余,并提供了一种更有效的方法来集成高频和低频信息。各种数据集上的广泛定性和定量评估表明,我们的模型可以生成结构一致且视觉上现实的HR图像。它以非常快的推理速度实现最新的(SOTA)结果。我们的代码可在https://github.com/thy960112/mdbn上找到。
摘要。车辆到全能(V2X)技术的最新进步使自动驾驶汽车能够共享感应信息以通过遮挡来查看,从而极大地提高了感知能力。但是,没有现实世界中的数据集来促进真正的V2X合作感知研究 - 现有数据集仅支持车辆到基础设施合作或车辆到车辆的合作。在本文中,我们提出了V2X-Real,这是一个大规模数据集,其中包括多种车辆和智能基础设施的混合物,以促进V2X合作感知的发展,并具有多模式感测数据。我们的V2X-Real是使用两个连接的自动化车辆和两个智能基础架构收集的,它们都配备了包括LIDAR传感器和多视图摄像头在内的多模态传感器。整个数据集包含33K激光镜框架和171K摄像机数据,在非常挑战的城市场景中,有10个类别的注释框架超过120万。根据协作模式和自我观点,我们为以车辆为中心,以基础设施为中心,车辆到车辆和基础设施到基础结构的合作社来得出四种类型的数据集。提供了SOTA合作感知方法的综合多级多级多代理基准。V2X-REAL数据集和代码库可在https://mobility-lab.seas.ucla.edu/ v2x-real上找到。