摘要 - 促进感知的目的是通过利用附近连接的自动化车辆(CAV)的补充信息来实现整体感知的结构,从而赋予了更广泛的探测范围。尽管如此,如何合理地汇总自明观察仍然是一个开放的问题。在本文中,我们提出了一种新型的车辆对车辆感知框架 - 以基于TR ANSFORMER的CO Llaboration(COTR)称为V2VFormer。特别是。根据空间感知变压器(SAT)的位置相关性,它重新估算了特征的重要性,然后与通道的变压器(CWT)执行动态语义相互作用。,COTR是一个轻巧和插件的模块,可以将其无缝调整到带有可接受的计算开销的未货架3D检测器上。此外,通过各种驾驶条件进一步增强了大规模的合作感知数据集V2V-集合,从而为模型预处理提供了广泛的知识。定性和定量实验证明了我们提出的V2Vformer在模拟和现实世界情景中实现了最新的(SOTA)协作绩效,从而超过了所有对应方面的大量余量。我们希望这将推动未来网络自主驱动研究的进步。
主要关键词