引言与连接上游 5′ 剪接位点 (ss) 和下游 3′ ss 的经典剪接不同,反向剪接将下游 5′ 反向剪接位点 (bss) 与上游 3′ bss 连接,产生共价闭合的环状 RNA (circRNA) [1-7]。尽管反向剪接的加工方式不利,但它由与经典剪接相同的剪接体机制催化 [8-10],表明它们之间存在直接竞争 [11]。此外,反向剪接也受顺式元件和反式因子的严格调控 [10,12-16],导致 circRNA 在所检测的广泛细胞系、组织和物种中呈现时空表达 [17-25]。越来越多的证据表明,circRNA 表达失调与人类疾病有关,如癌症 [ 26 – 29 ]、系统性红斑狼疮 [ 30 ] 和神经元变性 [ 31 , 32 ],表明它们在生理和病理条件下都发挥着潜在作用 [ 1 , 2 , 5 ]。从机制上讲,大多数 circRNA 位于细胞质中,有些被发现充当 miRNA 或蛋白质的诱饵 [ 12 , 15 , 19 , 22 , 30 , 32 , 33 ]。尽管如此,大多数 circRNA 的生物学意义仍未被充分探索,部分原因是其功能研究方法有限,例如 DNA 水平上的 circRNA 敲除 (KO)。例如,CRISPR/Cas9 基因组编辑去除了
1 Harrison PJ,Tunbridge EM,Dolphin AC,Hall J. Hall J.电压门控钙通道阻滞剂用于精神疾病:基因组重新评估。英国精神病学杂志。2020; 216(5):250-53。2 Striessnig J,Pinggera A,Kaur G,Bock G,Tuluc P. L型Ca2+心脏和大脑中的通道。Wiley跨学科评论:膜运输和信号传导。2014; 3(2):15-38。 3 Soldatov,N。M.,Bouron,A.,Reuter,H。二氢吡啶对人Ca2+通道剪接变体的不同电压依赖性抑制作用。 生物学杂志,1995; 270(18):10540–10543。 4 Mazin PV,Khaitovich P,Cardoso-Moreira M,Kaessmann H.哺乳动物器官开发过程中的替代剪接。 自然遗传学。 2021; 53(6):925-34。 5 Clark MB,WRZesinski T,Garcia AB,Hall Nal,Kleinman JE,Hyde T等。 长阅读测序揭示了人脑中精神危险基因CACNA1C的复杂剪接曲线。 分子精神病学。 2020; 25(1):37-47。 6 Jaffe AE,Straub RE,Shin JH,Tao R,Gao Y,Collado-Torres L等。 人皮层转录组的发育和遗传调节阐明了精神分裂症的发病机理。 自然神经科学。 2018; 21(8):1117-25。2014; 3(2):15-38。3 Soldatov,N。M.,Bouron,A.,Reuter,H。二氢吡啶对人Ca2+通道剪接变体的不同电压依赖性抑制作用。生物学杂志,1995; 270(18):10540–10543。4 Mazin PV,Khaitovich P,Cardoso-Moreira M,Kaessmann H.哺乳动物器官开发过程中的替代剪接。自然遗传学。2021; 53(6):925-34。5 Clark MB,WRZesinski T,Garcia AB,Hall Nal,Kleinman JE,Hyde T等。长阅读测序揭示了人脑中精神危险基因CACNA1C的复杂剪接曲线。分子精神病学。2020; 25(1):37-47。6 Jaffe AE,Straub RE,Shin JH,Tao R,Gao Y,Collado-Torres L等。人皮层转录组的发育和遗传调节阐明了精神分裂症的发病机理。自然神经科学。2018; 21(8):1117-25。2018; 21(8):1117-25。
邀请申请在Würzburg大学的分子感染生物学研究所的贝斯组中的博士生职位。我们的研究小组于去年9月成立,并将远期遗传学与生物化学结合使用,以了解RNA剪接调节和剪接体组装的初始步骤。剪接是转录后处理的重要步骤。破坏剪接的突变通常会产生有害后果,从而导致从神经肌肉疾病到癌症的广泛疾病。我们的研究小组的目标是对剪接及其在细胞内的调节获得详细的机械理解,不仅了解基本真核生物学,而且了解人类疾病。特别是我们专注于了解剪接站点选择的发生方式以及与剪接体组装的相互作用。剪接体是一种高度复杂的分子机,它将从150多种蛋白质和5个小核RNA中从头开始,以催化其催化。令人着迷的不仅是如何调节该组件,而且是剪接体如何处理其非常多样化的底物池。学生将通过使用多种技术(包括RNA-Seq方法和分子生物学方法)(例如接近标签,IP-MS)和生物化学。资格:
粘稠的分泌物会阻塞胰管并扰乱消化过程,导致食物吸收不良。CF 的标准疗法旨在改善症状和预防感染。CFTR 调节剂是一种新型疗法,通过调节有缺陷的 CFTR 的结构和功能来改善跨细胞膜的氯离子转运。已知的 CFTR 突变超过 1,700 种。适合当前 CFTR 疗法的突变类别包括门控突变、传导突变、剪接突变、蛋白质加工突变和残留功能突变。患者对 CFTR 调节剂疗法的反应取决于患者的 CFTR 突变类别。同一突变类别中的某些突变对同一种 CFTR 调节剂疗法有反应。Kalydeco (ivacaftor) 是最初的 CFTR 调节剂,通过结合 CFTR 蛋白并增加通道处于开放位置的时间起到增效剂的作用。后期的 CFTR 调节剂均含有校正剂,可帮助 CFTR 蛋白正确折叠并到达细胞表面。Orkambi 将 ivacaftor 与 lumacaftor 相结合。Symdeko 将 ivacaftor 与 tezacaftor 相结合。Orkambi 和 Symdeko 之间的主要区别在于药物之间的相互作用。Trikafta 是一种三重组合 CFTR 调节剂药物,在 ivacaftor 和 tezacaftor 中添加了新成分 elexacaftor。Elexacaftor 与 tezacaftor 协同作用,可更好地纠正有缺陷的 CFTR 并带来显著的临床益处。III. 政策
长时间暴露于阿片类药物会引起对疼痛刺激的敏感性(阿片类药物诱导的痛觉过敏,OIH),并且需要增加阿片类药物剂量以维持镇痛(阿片类药物诱导的耐受性,OIT),但是这两个过程的基础机制仍然保持模糊。我们发现,雄性小鼠原发性伤害性神经元中HCN2离子通道的药理阻滞或遗传缺失完全消除了OIH,但对OIT没有影响。相反,对中央HCN通道的药理抑制可缓解OIT,但对OIH没有影响。C-FOS的表达是神经元活性的标志物,通过诱导OIH的二阶神经元增加了C-FOS的表达,并且通过HCN2的外围阻滞或HCN2的遗传缺失来预防增加的HCN2,但HCN通道的脊柱障碍块对C-FOS的脊柱块对C-FOS的表达没有影响。总体而言,这些观察结果表明,OIH是由外围伤害感受器中的HCN2离子通道驱动的,而OIT则由位于CNS中的HCN家族的成员驱动。诱导OIH增加了伤害性神经元的cAMP,因此HCN2激活曲线的转移导致伤害感受器的增加。 HCN2的移位是由组成型活性μ-阿片受体(MOR)表达引起的,并被MOR拮抗剂逆转。 我们将阿片类药物诱导的MOR识别为六跨膜剪接变体,我们表明它通过组成型与G s的耦合而增加了cAMP。 因此, HCN2离子通道驱动OIH,可能是OIT,并且可能是成瘾治疗的新型治疗靶标。诱导OIH增加了伤害性神经元的cAMP,因此HCN2激活曲线的转移导致伤害感受器的增加。HCN2的移位是由组成型活性μ-阿片受体(MOR)表达引起的,并被MOR拮抗剂逆转。我们将阿片类药物诱导的MOR识别为六跨膜剪接变体,我们表明它通过组成型与G s的耦合而增加了cAMP。HCN2离子通道驱动OIH,可能是OIT,并且可能是成瘾治疗的新型治疗靶标。
雄激素受体 (AR) 顺反组在前列腺细胞身份的形成中至关重要,而其失调会促进前列腺癌的发展。先驱转录因子 Forkhead box A1 (FOXA1) 已被证明对 AR 募集到雄激素反应元件 (ARE) 至关重要,从而允许对 AR 顺反组进行重新编程,导致前列腺细胞转化。FHD-286 是一种 BRM/BRG1 双 ATPase 抑制剂,目前正在进行 AML 临床试验。在这里,我们表明用 FHD-286 治疗前列腺癌细胞系会导致肿瘤相关 AR 结合位点 (T-ARBS) 处 FOXA1 介导的 ARE 消融。双 ATPase 治疗随后降低了各种致癌 AR 靶基因的表达水平,导致肿瘤细胞活力下降。患者来源的类器官和体内研究均通过显示肿瘤生长减少提供了进一步的验证。令人惊讶的是,抑制 BAF 复合物活性可绕过去势和恩杂鲁胺治疗后常见的 AR 抗性机制,因为含有 AR-V7 剪接变体和神经内分泌类器官的细胞系表现出敏感性。总之,我们的数据说明了通过使用 FHD-286 治疗抑制肿瘤相关 ARE 来治疗 AR 介导的前列腺癌的一种新机制。
摘要。背景/目的:青蒿素及其衍生物不仅是已获批准的抗疟药,还具有强大的抗癌活性。基于此前报道的青蒿琥酯 (ART) 在宫颈癌中的临床活性,我们研究了一组 12 种不同的生物标志物,并确定了 Wilms 肿瘤 1 (WT1) 蛋白是 ART 的潜在靶点。患者和方法:对接受 ART 治疗的患者在治疗前、治疗期间和治疗后匹配的宫颈癌活检样本进行研究,以了解其是否诱导细胞凋亡 (TUNEL 检测) 以及 Wilms 肿瘤蛋白 1 (WT1)、14-3-3 ζ、分化标志物簇 (CD4、CD8、CD56)、ATP 结合盒转运蛋白 B5 (ABCB5)、谷胱甘肽 S-转移酶 P1 (GSTP1)、诱导型一氧化氮合酶 (iNOS)、翻译控制肿瘤蛋白 (TCTP)、真核延伸因子 3 (eIF3) 和 ADP/ATP 转位酶的表达情况。已选择 WT1 进行更详细的分析,使用分子对接进行计算机模拟,使用重组 WT1 进行微尺度热泳动,并使用转染了四种不同 WT1 剪接变体的 HEK293 细胞进行细胞毒性测试 (刃天青检测)。结果:ART 治疗患者肿瘤后,凋亡细胞比例和 WT1、14-3-3 ζ 和 CD4 表达增加。ART 在计算机中与位于 WT1 的 DNA 结合位点的结构域结合,而二氢青蒿素 (DHA) 以低亲和力与 WT1 的另一个与 DNA 结合无关的位点结合。使用微尺度验证了结果
CRISPR/Cas9 技术为疾病建模和了解基因与表型之间的联系提供了独特的能力。在培养细胞中,化学介导的 Cas9 活性控制可以限制脱靶效应,并实现对必需基因的机制研究。然而,广泛使用的 Tet-On 系统通常显示“泄漏”的 Cas9 表达,导致意外编辑,以及诱导时活性较弱。泄漏在 Cas9 核酸酶活性的背景下可能是一个明显的问题,这可能导致 DNA 损伤的累积和靶细胞基因组的降解。为了克服这些缺陷,我们建立了转基因平台,以最大限度地减少 Cas9 在关闭状态下的功能,同时最大限度地提高和不损害开启状态下的基因编辑效率。通过结合条件性不稳定和 Cas9 抑制,我们开发了一种一体化(一个或多个向导 RNA 和 Cas9)超紧密、Tet 诱导系统,在各种细胞系和靶标中具有出色的动态范围(开启状态与关闭状态)。作为 Tet 介导诱导的替代方案,我们创建了一个 branaplam 调节的剪接开关模块,用于低基线和强大的 Cas9 活性控制。最后,对于需要避免 DNA 损伤的情况,我们构建了一个双重控制、Tet 诱导的 CRISPRi 模块,用于紧密和有效的转录沉默。这套升级的诱导型 CRISPR 系统可广泛应用于多种细胞类型和实验条件。
CRISPR 基因编辑是一种治疗遗传疾病的变革性技术,但递送限制在很大程度上限制了其治疗应用到肝脏靶向和体外治疗。在这里,我们介绍了 NanoCas 的发现和工程设计,这是一种超紧凑型 CRISPR 核酸酶,能够将 CRISPR 在体内的作用范围扩展到肝脏靶标之外。我们通过实验筛选了在宏基因组数据中发现的 176 个超紧凑型 CRISPR 系统,并应用蛋白质工程方法来提高 NanoCas 的编辑效率。当通过腺相关病毒 (AAV) 载体给药时,优化的 NanoCas 在体内对各种细胞系统和组织表现出强大的编辑能力。尽管 NanoCas 的大小约为传统 CRISPR 核酸酶的三分之一,但仍能实现这一点。在概念验证实验中,我们观察到在小鼠模型中使用优化的 NanoCas 进行稳健的编辑,该模型靶向参与胆固醇调节的基因 Pcsk9,并靶向肌营养不良蛋白中的外显子剪接位点以解决杜氏肌营养不良症 (DMD) 突变。我们进一步在非人类灵长类动物 (NHP) 体内测试了我们的 NanoCas 系统的有效性,结果发现肌肉组织中的编辑水平超过 30%。NanoCas 体积小巧,结合强大的核酸酶编辑功能,为体内非肝脏组织的单 AAV 编辑打开了大门,包括使用较新的编辑模式,例如逆转录酶 (RT) 编辑、碱基编辑和表观遗传编辑。
摘要 使用嵌合抗原受体 (CAR) T 细胞靶向 T 细胞恶性肿瘤受到针对 CD3 和 CD7 等共享抗原的“ T v T ”自相残杀的阻碍。碱基编辑通过创建终止密码子或消除剪接位点,提供了无缝中断有问题抗原的基因表达的可能性。我们描述了通过在慢病毒介导的 CD3 或 CD7 特异性 CAR 表达之前有序去除 TCR/CD3 和 CD7 来产生抗自相残杀的 T 细胞。对碱基编辑细胞的分子询问证实了在常规 Cas9 处理的细胞中检测到的染色体易位的消除。有趣的是,3CAR/7CAR 共培养导致“自我富集”,产生了 99.6% TCR − /CD3 − /CD7 − 的群体。 3CAR 或 7CAR 细胞能够对具有明确 CD3 和/或 CD7 表达的白血病细胞系以及原代 T-ALL 细胞发挥特异性细胞毒性。共培养的 3CAR/7CAR 细胞在体外和体内人:鼠嵌合模型中对 CD3 + CD7 + T-ALL 靶标表现出最高的细胞毒性。据报道,APOBEC 编辑器可以表现出 DNA 和 RNA 的向导独立的脱氨作用,但我们没有发现影响 CAR 抗原特异性结合区域的有问题的“脱靶”活性或混杂碱基转换,否则可能会重定向 T 细胞特异性。联合输注抗自相残杀的抗 T CAR T 细胞可能在 T 细胞恶性肿瘤的异基因造血干细胞移植之前增强分子缓解。