背景和目标:最近,提出了一种基于稳态视觉诱发电位(SSVEP-BCI)的很有前途的脑机接口,它由两个刺激组成,这两个刺激一起呈现在受试者的视野中心,但在不同的深度平面(景深设置)。因此,用户可以通过转移眼球焦点轻松地选择其中一个。然而,在这项工作中,EEG 信号是通过放置在枕骨和顶骨区域(头发覆盖的区域)的电极收集的,这需要较长的准备时间。此外,该工作使用了低频刺激,这会产生视觉疲劳并增加光敏性癫痫发作的风险。为了提高实用性和视觉舒适度,本研究提出了一种基于景深的 BCI,使用从发际线以下区域(耳后)测量的高频 SSVEP 响应。
同时进行 EEG-fMRI 是一种强大的大脑成像多模态技术,但其在神经反馈实验中的应用受到 MRI 环境引起的 EEG 噪声的限制。神经反馈研究通常需要实时分析 EEG,但扫描仪内获取的 EEG 受到心冲击图 (BCG) 伪影的严重污染,这是一种锁定在心动周期的高振幅伪影。虽然确实存在用于去除 BCG 伪影的技术,但它们要么不适合实时、低延迟应用(例如神经反馈),要么功效有限。我们提出并验证了一种名为 EEG-LLAMAS(低延迟伪影缓解获取软件)的新型开源 BCG 去除软件,该软件调整并改进了现有的伪影去除技术,以用于低延迟实验。我们首先使用模拟在已知基本事实的数据中验证了 LLAMAS。我们发现,在恢复 EEG 波形、功率谱和慢波相位方面,LLAMAS 的表现优于目前最好的公开可用的实时 BCG 去除技术——最佳基组 (OBS)。为了确定 LLAMAS 在实践中是否有效,我们随后使用它对健康成年人进行实时 EEG-fMRI 记录,使用稳态视觉诱发电位 (SSVEP) 任务。我们发现 LLAMAS 能够实时恢复 SSVEP,并且比 OBS 更好地恢复扫描仪外收集的功率谱。我们还在实时记录期间测量了 LLAMAS 的延迟,发现它引入的延迟平均不到 50 毫秒。LLAMAS 的低延迟加上其改进的伪影减少,因此可以有效地用于 EEG-fMRI 神经反馈。该平台实现了以前难以实现的闭环实验,例如针对短时间 EEG 事件的实验,并与神经科学界公开共享。
这项工作旨在设计,开发和评估基于稳态视觉诱发电位(SSVEP)的BCI系统。 div>该应用程序是通过Valladolid大学生物医学工程小组创建的Medusa平台开发的。 div>为此,在Python中实现了应用程序的图形接口和信号处理方法。 div>所研究的BCI系统是一个拼写器,可让您通过在SSVEPS EEG中检测到矩阵单元中代表的命令。 div>后者是由视觉刺激在一定刺激频率下引起的。 div>在审查了最新的现状后,得出的结论是,实现这一目标的最佳方法是通过关节频率案例编码范式和规范处理方法相关性分析。 div>
沟通困难大大降低了瘫痪和身体受损的人的生活质量。脑电图(EEG)脑 - 计算机界面(BCIS)为这些人提供潜在的通信方法,因为他们不需要侵入性手术或物理装置控制。尽管在EEG BCI范式中有充分的文献记录了虚拟键盘协议,但p300拼写器和稳态视觉诱发电位(SSVEP)在视觉上征税和疲劳。运动图像可以将其硬编码为特定的键或按钮;但是,这需要大量的数据培训和多个特定手势的耗时编码。在机器学习分类器中,秘密或想象的语音BCI范式编码了想象中的特定脑电图模式为离散输出。语言核心成分,音素,已经报道了
背景和目标:最近,提出了一种基于稳态视觉诱发电位(SSVEP-BCI)的很有前途的脑机接口,它由两个刺激组成,这两个刺激一起呈现在受试者的视野中心,但在不同的深度平面(景深设置)。因此,用户可以通过转移眼球焦点轻松地选择其中一个。然而,在这项工作中,EEG 信号是通过放置在枕骨和顶骨区域(头发覆盖的区域)的电极收集的,这需要较长的准备时间。此外,该工作使用了低频刺激,这会产生视觉疲劳并增加光敏性癫痫发作的风险。为了提高实用性和视觉舒适度,本研究提出了一种基于景深的 BCI,使用从发际线以下区域(耳后)测量的高频 SSVEP 响应。
脑机接口 (BCI) 对患有运动障碍的患者有益,因为它为他们提供了一种创造性表达的方式,从而改善心理健康。BCI 旨在建立大脑和计算机之间的直接通信媒介。因此,与传统的音乐接口不同,它不需要肌肉力量。本文探讨了使用基于稳态视觉诱发电位 (SSVEP) 的 BCI 构建声音合成器的潜力。它研究了使运动障碍患者能够表达自己的新方法。它提出了一个称为声音表达的新概念,即纯粹通过声音合成来表达自己。它介绍了基于 BCI 的声音合成器的新布局和设计,并讨论了这些接口的局限性。对不同的声音合成技术进行了评估,以找到适合此类系统的技术。基于声音表达所支配的框架来评估和比较合成技术。
摘要。目的。信息传输速率 (ITR) 或有效比特率是一种流行且广泛使用的信息测量指标,尤其适用于基于 SSVEP 的脑机 (BCI) 接口。通过将速度和准确性结合为单值参数,该指标有助于评估和比较不同 BCI 社区中的各种目标识别算法。为了计算 ITR,通常假设输入分布均匀,并且通道模型过于简单,该模型无记忆、静止且本质上对称,字母大小离散。因此,为了准确描述性能并启发未来 BCI 设计的端到端设计,需要更彻底地检查和定义 ITR。方法。我们将视网膜膝状体视觉通路承载的共生通信介质建模为离散无记忆通道,并使用修改后的容量表达式重新定义 ITR。我们利用有向图的结果来表征由于新定义导致的转换统计不对称与 ITR 增益之间的关系,从而得出数据速率性能的潜在界限。主要结果。在两个著名的 SSVEP 数据集上,我们比较了两种尖端目标识别方法。结果表明,诱导的 DM 通道不对称对实际感知的 ITR 的影响大于输入分布的变化。此外,证明了新定义下的 ITR 增益与通道转换统计的不对称呈反比。进一步表明,单独的输入定制可以带来感知的 ITR 性能改进。最后,提出了一种算法来寻找二分类的容量,并进一步讨论了通过集成技术将这些结果扩展到多类情况。意义。我们期望我们的研究结果将有助于表征高度动态的 BCI 通道容量、性能阈值和改进的 BCI 刺激设计,以实现人脑与计算机系统之间更紧密的共生,同时确保有效利用底层通信资源。
脑机接口 (BCI) 连接人与机器。作为 BCI 的一种应用,BCI 拼写器(一种用于与肢体残疾人士交流的文本输入接口)得到了广泛的研究。BCI 拼写器的性能要求是大量同时输入和高正确响应率,类似于 PC 键盘 [1]。在我们之前的研究中,我们研究了具有 50 个输入的稳态视觉诱发电位 (SSVEP)-BCI 拼写器 [2]。如果可以同时输入 50 个,则可以分配所有日语平假名和标点符号。具体而言,为 50 个屏幕字符分配不同的眨眼频率,并从 EEG 中检测到响应的差异。然而,EEG 可以检测到的频率范围是有限的。此外,频率划分越细,检测就越困难。因此,必须改进信号处理算法。
大脑计算机界面(BCI)连接人类和机器。作为BCI的应用,BCI Speller(用于与物理残疾的文本输入接口)已得到广泛研究。BCI拼写器所需的性能是大量的同时输入和高正确的响应率,类似于PC键盘[1]。在我们先前的研究中,我们研究了具有50个输入的稳态视觉引起的电势(SSVEP)–BCI拼写器[2]。如果可以同时输入50个,则可以分配所有日本的Hiragana和标点符号。具体来说,将不同的眨眼频率分配给50个屏幕字符,并从EEG中检测到响应的差异。但是,脑电图检测到的频率范围有一个限制。此外,频划分越少,检测就越困难。因此,必须改进信号处理算法。
目标和背景:数十年来,稳态视觉诱发电位 (SSVEP) 领域的研究已经揭示了节律性光刺激在脑机接口方面的巨大潜力。此外,节律性光刺激为大脑振荡活动的同步提供了一种非侵入性方法。特别有效的方案能够实现不可感知的节律性刺激,从而减少眼睛疲劳和用户不适,这是有利的。在这里,我们通过要求参与者 (a) 在显性注意力条件下直接关注刺激源或 (b) 在隐性注意力条件下关注刺激源下方的十字线,研究 (1) 可感知和 (2) 不可感知的节律性光刺激的影响以及刺激对注意力的影响。
