摘要 — 最近,使用现代机器学习技术解码和解释脑信号的脑机接口 (BCI) 领域取得了实质性进展。虽然脑电图 (EEG) 提供了一种与人脑交互的非侵入性方法,但获取的数据通常严重依赖于受试者和会话。这使得将这些数据无缝整合到现实世界的应用中变得棘手,因为受试者和会话数据的差异可能导致漫长而繁琐的校准要求和跨受试者泛化问题。专注于稳态视觉诱发电位 (SSVEP) 分类系统,我们提出了一种生成高度逼真的合成 EEG 数据的新方法,这些数据不受任何受试者、会话或其他环境条件的影响。我们的方法称为主题不变 SSVEP 生成对抗网络 (SIS-GAN),它使用单个网络从多个 SSVEP 类别生成合成 EEG 数据。此外,通过利用固定权重预训练的主题分类网络,我们确保我们的生成模型对主题特定特征保持不可知,从而生成可应用于新的以前未见过的主题的主题不变数据。我们广泛的实验评估证明了我们的合成数据的有效性,在使用我们的主题不变合成 EEG 信号进行训练时,可实现卓越的性能,在零校准分类任务中可提高高达 16 个百分点。
简介:脑机接口 (BCI) 尚未被主流采用作为控制范例,因为大多数 BCI 系统都很笨重、难以设置,并且在移动环境中通常表现不够好,无法取代现有的输入模式。然而,BCI 可能有望成为多模式系统的一部分,当用户的手不空闲和/或无法发出语音命令时,该系统可以增强交互,这通常是高度移动应用领域的要求。随着电极功能的最新进展以及移动设备和头戴式显示器处理能力的提高,现在可以在移动设备上实时获取、发送和处理 EEG 信号。这些改进使得构建可穿戴移动 BCI 成为可能,它可以为主流用户和残疾人提供替代的交互方法。本摘要描述了我们正在进行的设计和评估可穿戴移动 BCI 组件的工作中的两项试点研究。材料、方法和结果:在我们的第一项研究中,我们的目标是设计一个 BCI 来检测所有可穿戴组件的 SSVEP。谷歌眼镜 [2] 用于同时向参与者呈现两个闪烁的视觉刺激,频率为 13 Hz 和 17 Hz。我们的 EEG 放大器是一块 OpenBCI 板,我们使用定制的 3D 打印夹子将其夹在参与者的腰带上。我们使用三个电极:枕骨(Oz)作为信号、乳突作为接地、耳垂作为参考,来检测 SSVEP 信号。我们记录了 EEG 数据以供离线分析。在 10 个疗程中,使用图 1 所示的装置,我们可以检测到参与者正在关注两个刺激中的哪一个,对于 13 Hz 的准确率为 76%-84%,对于 17 Hz 的准确率为 67%-72%,对于 1 秒长滑动窗口 SSVEP 的 PSD 振幅谱作为特征,使用对每个刺激单独训练的 10 倍交叉验证 RF 分类器。我们将实验扩展到步行-秒表刺激场景,发现单个刺激 1 秒长滑动窗口 SSVEP 的准确率为 93%。我们第二项研究的目的是确定是否可以用易于制作的定制入耳电极替换头皮电极,该电极改编自 Looney [1] 讨论的耳电极设计。我们使用 eFit s 扫描仪创建了参与者左耳的模型。然后,我们 3D 打印了一个耳机,并放置了 3 个预凝胶的 Ag/AgCl 接地板电极,并用银箔覆盖,使它们接触外耳的耳道壁。将用于比较的入耳电极和 Oz 连接到可穿戴 OpenBCI 系统和距离用户 6 厘米的闪烁的 13Hz LED。如图 2 所示,枕骨区域的峰值 SSVEP 幅度高于耳道,但 SNR 也增加了,因此使用可穿戴 BCI 从耳朵和头皮的检测准确率可达到 80-90%。
基于稳态视觉诱发电位 (SSVEP) 的大脑计算机互连的发展,使用户能够控制遥控汽车。为了获得具有最高振幅的 SSVEP 信号,为了获得开发的 BCI 的最佳性能,估计了面积、频率和形状的视觉技术沉淀条件。使用改进的 SSVEP BCI 组装并授权了一辆按钮驱动的汽车,展示了其适当的功能 [1]。这项工作旨在寻找和测量一种用于在连续 BCI 应用中确定错误的新方法。新技术不是基于单次试验对错误进行分类,而是支持多事件 (ME) 分析以扩大错误检测的准确性。方法:在支持运动心理意象 (MI) 的 BCI 驱动的汽车游戏中,每当受试者与硬币和/或障碍物相撞时,就会触发不同的事件。硬币算作正确事件,而障碍物则算作错误 [2]。这倾向于提供两种混合BCI,一种结合运动心理意象(MI)和P300,另一种结合P300和稳定状态视觉电位差(SSVEP),以及它们的应用。BCI研究的一个重要问题是多维控制。潜在的应用包括BCI控制的移动、记录和信息处理、应用程序、椅子和神经假体。基于EEG的多方面控制的挑战是从不断变化的EEG数据中获得多个自由控制波[3]。许多类型的医疗服务被建立以减少儿童注意力缺陷障碍(ADD)的数量。一些可用的治疗方法不适合儿童,因为使用药物并且需要他们冥想。使用基于神经的体育游戏对ADD儿童进行心理特征训练尚未见报道[4]。独特的问题限制了BCI模型在脑电图(EEG)记录期间不可避免的生理伪影发生率的实际效力。然而,由于处理过程漫长而复杂,伪影的结果在灵敏的 BCI 系统中基本上被忽略。伪影的影响以及在灵敏的 BCI 中减少这些影响的能力。由于幅度增加和重复存在,眼科和肌肉伪影被认为是可能的 [5]。
摘要:稳态视觉诱发电位(SSVEP)作为一种信息丰富的脑电信号,在无线可穿戴设备中脱颖而出。然而,其数据通常非常庞大,占用过多的带宽源,并且在以原始数据形式传输时需要巨大的功耗,因此需要对其进行压缩。本文提出了一种针对SSVEP应用的个性化脑电信号压缩与重构算法。在该算法中,为了实现个性化,首先使用面向BCI应用的开放基准数据库(BETA)对初级人工神经网络(ANN)模型进行预训练。然后,通过增量学习为每个受试者生成自适应ANN模型来压缩他们的个人数据。此外,提出了一种个性化的非均匀量化方法来减少压缩引起的误差。在BETA上进行测试,当压缩率为12.7倍时,识别准确率仅下降3.79%。与不使用ANN、不使用均匀量化的情况相比,所提算法在准确度测试中可使信号损失从50.43%减少到81.08%。
摘要 目的. 脑机接口(BCI)近年来在扩展其指令集方面取得了重大进展,引起了研究者的广泛关注。目标和命令的数量是BCI解码大脑意图能力的关键指标。目前尚无研究报道过具有超过200个目标的BCI系统。方法. 本研究开发了第一个具有多达216个目标的高速BCI系统,这些目标由多种脑电图特征编码,包括P300、运动视觉诱发电位(mVEP)和稳态视觉诱发电位(SSVEP)。具体而言,混合BCI范式使用时频分多址策略,用不同时间窗的P300和mVEP以及不同频率的SSVEP精心标记目标。然后通过任务判别成分分析和线性判别分析解码混合特征。十名受试者参加了离线和在线提示引导拼写实验。另外十名受试者参加了在线自由拼写实验。主要结果。离线结果显示,mVEP 和 P300 成分在中央、顶叶和枕叶区域突出,而最明显的 SSVEP 特征在枕叶区域。在线提示引导拼写和自由拼写结果表明,所提出的 BCI 系统对 216 个目标分类的平均准确率分别为 85.37% ± 7.49% 和 86.00% ± 5.98%,平均信息传输速率 (ITR) 分别为 302.83 ± 39.20 位分钟 -1 和 204.47 ± 37.56 位分钟 -1。值得注意的是,峰值 ITR 可达 367.83 位分钟 -1。意义。本研究开发了第一个超过 200 个目标的高速 BCI 系统,有望扩展 BCI 的应用场景。
脑机接口 (BCI) 是一种使用脑电图 (EEG) 信号控制外部设备(例如功能性电刺激 (FES))的技术。基于 P300 和稳态视觉诱发电位 (SSVEP) 的视觉 BCI 范例已显示出巨大的临床用途潜力。已经发表了许多关于基于 P300 和 SSVEP 的非侵入式 BCI 的研究,但其中许多研究存在两个缺点:(1) 它们不适用于运动康复应用,(2) 它们没有详细报告用于分类的人工智能 (AI) 方法或其性能指标。为了弥补这一差距,本文采用 PRISMA(系统评价和荟萃分析的首选报告项目)方法来准备系统文献综述 (SLR)。重复或与运动康复应用无关的 10 年以上的论文被排除在外。在所有研究中,51.02% 涉及分类算法的理论分析。在剩余的研究中,28.48% 用于拼写,12.73% 用于各种应用(轮椅或家用电器的控制),只有 7.77% 专注于运动康复。在应用纳入和排除标准并进行质量筛选后,共选出 34 篇文章。其中,26.47% 使用 P300,55.8% 使用 SSVEP 信号。建立了五个应用类别:康复系统(17.64%)、虚拟现实环境(23.52%)、FES(17.64%)、矫形器(29.41%)和假肢(11.76%)。在所有作品中,只有四篇对患者进行了测试。报告的用于分类的机器学习 (ML) 算法中,最常用的是线性判别分析 (LDA) (48.64%) 和支持向量机 (16.21%),而只有一项研究使用了深度学习算法:卷积神经网络 (CNN)。报告的准确率范围为 38.02% 至 100%,信息传输速率范围为每分钟 1.55 至 49.25 比特。虽然 LDA 仍然是最常用的 AI 算法,但 CNN 已显示出令人鼓舞的结果,但由于其技术实施要求高,许多研究人员
脑机接口 (BCI) 提供了一种替代的交流方式,在过去 20 年里引起了人们日益增长的兴趣。具体来说,对于基于稳态视觉诱发电位 (SSVEP) 的 BCI,频率识别方法和数据共享已经有了显著的改进。然而,这个领域的公共数据库数量仍然有限。因此,我们在研究中提出了一个面向 BCI 应用的 BE 基准数据库 (BETA)。BETA 数据库由 70 名执行 40 个目标提示拼写任务的受试者的 64 通道脑电图 (EEG) 数据组成。BETA 的设计和获取是为了满足现实世界应用的需求,它可以用作这些场景的试验台。我们通过一系列分析验证了数据库,并对 BETA 上的十一种频率识别方法进行了分类分析。我们建议分别使用宽带信噪比 (SNR) 和 BCI 商来表征单次试验和人群水平的 SSVEP。BETA 数据库可从以下链接下载 http://bci.med.tsinghua.edu.cn/download.html。
摘要 - 我们提供了一个混合脑机界面(BMI),该界面(BMI)整合了基于视觉诱发电位(SSVEP)的脑电图和面部EMG,以改善多模式控制并减轻辅助应用中的疲劳。传统的BMI仅依赖于脑电图或EMG具有固有的局限性 - 基于EEG的控制需要持续的视觉焦点,导致认知疲劳,而基于EMG的控制会随着时间的流逝引起肌肉疲劳。我们的系统在脑电图和EMG输入之间动态交替,使用EEG检测9.75 Hz的SSVEP信号,以及从脸颊和颈部肌肉中检测到14.25 Hz和14.25 Hz和EMG,以根据任务需求优化控制。在虚拟乌龟导航任务中,混合系统达到了与仅EMG的方法相当的任务完成时间,而90%的用户报告说减少或相等的物理需求。这些发现表明,多模式BMI系统可以增强可用性,减少应变并改善辅助技术的长期依从性。索引术语 - 基于EEG的接口,EMG处理和应用,脑机界面
摘要:基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)拼写器因其高信息传输速率(ITR)而受到广泛研究。本文旨在提高SSVEP-BCI在高速拼写方面的实用性。系统从自行开发的专用EEG设备获取脑电图(EEG)数据,并将刺激布置为键盘。对任务相关成分分析(TRCA)空间滤波器进行修改(mTRCA)以进行目标分类,并且在离线分析中与原始TRCA相比表现出明显更高的性能。在在线系统中,利用基于贝叶斯后验概率的动态停止(DS)策略来实现可变的刺激时间。此外,还优化了时间滤波过程和程序以促进在线DS操作。值得注意的是,在线 ITR 平均达到 330.4 ± 45.4 比特/分钟,明显高于固定停止 (FS) 策略,峰值 420.2 比特/分钟是迄今为止使用 SSVEP-BCI 的最高在线拼写 ITR。所提出的系统具有便携式 EEG 采集、友好的交互和可变的命令输出时间,为基于 SSVEP 的 BCI 提供了更大的灵活性,并有望实现实际的高速拼写。
中央运动神经元的失败导致运动障碍。患者失去了控制自愿肌肉的能力,例如上肢,这在日常使用计算机或智能手机的可能性中引入了根本性的不和谐。因此,患者失去了与他人交流的能力。本文介绍了脑部计算机拼写系统中最受欢迎的范式,并旨在由具有严重形式的运动障碍的人打字。脑部计算机界面(BCIS)已成为通信障碍者的一种有前途的技术。BCI-Spellers是使用户通过使用大脑活动在计算机屏幕上选择字母来拼写单词的系统。BCI销售者有三种主要类型:P300,运动图像(MI)和稳态视觉诱发电势(SSVEP)。但是,每种类型都有其自身的局限性,这导致了混合BCI - 塞伯菌的发展,从而结合了多种类型的优势。混合动力BCI - 销销量可以提高准确性,并减少用户变得有效所需的训练期。总体而言,混合BCI销售者有可能通过结合多种类型的BCI - 塞货物的优势来改善患有损害的人的沟通。总而言之,对于有沟通障碍的人来说,BCI - 塞伯勒是一项有前途的技术。p300,MI和SSVEP是BCI销售者的三种主要类型,每个类型都有自己的优势和局限性。需要进一步的研究来提高BCI销售商的准确性和可用性,并探索它们在游戏和虚拟现实等其他领域的潜在应用。
