患有肌萎缩侧索硬化症 (ALS)、严重脑瘫、头部创伤、多发性硬化症和肌营养不良症的患者无法与外部环境进行交流(闭锁综合征)。一些研究小组试图为神经肌肉受损患者开发独立于周围神经和肌肉的新型交流技术。一种有前途的方法是使用神经电信号,例如脑电图 (EEG) 或皮层内的单元神经活动,这些信号源自人脑作为控制或通信信号。通过执行设计的任务,可以生成特定的脑信号模式来激活外部设备或表达用户意图。这种技术被称为“脑机接口 (BCI)”。在我们的实验室中,我们提出了一种基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI)。我们仅使用一个放置在 Oz 位置的 EEG 电极,参考国际 EEG 10-20 系统,参考电极位于右乳突。由发光二极管 (LED) 或液晶显示器 (LCD) 中相位标记闪光引起的 SSVEP 被实时识别,以便控制计算机光标、遥控汽车、多媒体设备、键盘输入系统等。准确性和信息
亲爱的编辑,基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)与其他类型的BCI相比,具有更高的识别准确率、与刺激的关系更可靠、信息传输速率(ITR)更高等性能,引起了研究人员的广泛关注。基于SSVEP的BCI面临的一个主要挑战是可用于编码视觉目标的频带有限。更多的视觉目标可能会带来更高的ITR。为了解决这个问题,研究人员正在尝试设计新的编码方案,包括以代码形式呈现频率刺激和在编码方案中利用联合相位和频率信息[1-3]。这些研究通过将通信框架应用于BCI取得了显著的成果。受这些研究的启发,本研究提出了一种利用频率和空间信息对视觉目标进行编码的新编码方法。我们扩展了 [ 4 ] 的编码方案,在原始空间编码方案中引入了频率信息。根据我们提出的编码方案,我们实现了一个 BCI 系统,该系统利用四个不同的频率和相对于每个频率刺激的四个不同位置呈现 16 个视觉目标。与仅在编码方案中使用频率信息或空间信息的传统 BCI 系统相比,我们的提议研究可以
受试者之间和会话之间的脑电图 (EEG) 统计差异是脑机接口 (BCI) 领域面临的一个常见问题。这种差异阻碍了预先训练的机器学习模型的使用,并且需要对每个新会话进行校准。本文介绍了一种处理这种差异性的新迁移学习 (TL) 方法。该方法旨在通过在正定矩阵黎曼流形的切线空间中将一个受试者的 EEG 数据与另一个受试者对齐,来减少校准时间甚至提高 BCI 系统的准确性。我们在 18 个 BCI 数据库上测试了该方法,这些数据库总共包含 349 名受试者,属于三个 BCI 范式,即事件相关电位 (ERP)、运动想象 (MI) 和稳态视觉诱发电位 (SSVEP)。我们使用支持向量分类器进行特征分类。结果表明,与传统的训练-测试流程相比,在 ERP 范式中,分类准确度显著提高,而对于 MI 和 SSVEP 范式,性能均未下降。与之前发布的黎曼方法黎曼普鲁克勒斯分析 (RPA) 相比,总体准确度提高了 2.7%。有趣的是,切线空间对齐具有处理具有不同通道数的数据集的迁移学习的内在能力,自然适用于数据集间的迁移学习。
受试者之间和会话之间的脑电图 (EEG) 统计差异是脑机接口 (BCI) 领域面临的一个常见问题。这种差异阻碍了预先训练的机器学习模型的使用,并且需要对每个新会话进行校准。本文介绍了一种处理这种差异性的新迁移学习 (TL) 方法。该方法旨在通过在正定矩阵黎曼流形的切线空间中将一个受试者的 EEG 数据与另一个受试者对齐,从而减少校准时间并提高 BCI 系统的准确性。我们在 18 个 BCI 数据库上测试了该方法,这些数据库总共包含 349 名受试者,涉及三个 BCI 范式,即事件相关电位 (ERP)、运动想象 (MI) 和稳态视觉诱发电位 (SSVEP)。我们使用支持向量分类器进行特征分类。结果表明,与传统的训练-测试流程相比,在 ERP 范式中,分类准确度显著提高,而对于 MI 和 SSVEP 范式,性能均未下降。与之前发布的黎曼方法黎曼普鲁克勒斯分析 (RPA) 相比,总体准确度提高了 2.7%。有趣的是,切线空间对齐具有处理具有不同通道数的数据集的迁移学习的内在能力,自然适用于数据集间的迁移学习。
摘要。目的。本研究对开放的脑电图数据集进行了广泛的脑机接口 (BCI) 可重复性分析,旨在评估现有解决方案并建立开放且可重复的基准,以便在该领域进行有效比较。这种基准的必要性在于快速的工业进步,这导致了未公开的专有解决方案的产生。此外,科学文献密集,通常以难以重复的评估为特色,使现有方法之间的比较变得困难。方法。在一个开放的框架内,30 个机器学习管道(分为原始信号:11、黎曼信号:13、深度学习:6)在 36 个公开可用的数据集中被精心重新实现和评估,包括运动想象 (14)、P300 (15) 和 SSVEP (7)。该分析结合了统计荟萃分析技术来评估结果,包括执行时间和环境影响考虑。主要结果。该研究得出了适用于各种 BCI 范式的原则性和稳健性结果,重点是运动想象、P300 和 SSVEP。值得注意的是,利用空间协方差矩阵的黎曼方法表现出优异的性能,强调了需要大量数据才能通过深度学习技术实现具有竞争力的结果。综合结果是公开的,为未来研究进一步提高 BCI 领域的可重复性铺平了道路。意义。这项研究的意义在于它有助于为 BCI 研究建立严格透明的基准,提供对最佳方法的见解,并强调可重复性在推动该领域进步方面的重要性。
在这项研究中,提出了信息瓶颈方法作为稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCI)的优化方法。信息瓶颈是一种信息理论优化方法,可在保留有意义的信息和压缩之间解决问题。它在机器学习中的主要实际应用是表示学习或特征提取。在这项研究中,我们使用信息瓶颈来为BCI找到最佳的分类规则。这是信息瓶颈的新颖应用。此方法特别适合BCIS,因为信息瓶颈优化了BCI传输的信息量。稳态视觉诱发的基于潜在的BCI经常使用非常简单的规则进行分类,例如选择与最大特征值相对应的类。我们称此分类为Arg Max分类器。这种方法不太可能是最佳的,在这项研究中,我们提出了一种专门设计的分类方法,以优化BCIS的性能度量。这种方法比标准机器学习方法具有优势,该方法旨在优化不同的措施。在两个实验的两个公开可用数据集上测试了所提出的算法的性能。我们使用标准功率频谱密度分析(PSDA)和规范相关分析(CCA)在一个数据集上的特征提取方法,并表明当前方法的表现优于该数据集的大多数相关研究。在第二个数据集上,我们使用与任务相关的组件分析(TRCA)方法,并证明所提出的方法在使用少量类时,根据信息传输率,标准ARG最大分类规则优于标准ARG最大分类规则。据我们所知,这是在基于SSVEP的BCI的背景下使用信息瓶颈的第一次。 该方法是独一无二的,从某种意义上说,优化是在分类函数的整个空间中进行的。 它有可能提高BCIS的性能,并使校准不同受试者的系统更容易。据我们所知,这是在基于SSVEP的BCI的背景下使用信息瓶颈的第一次。该方法是独一无二的,从某种意义上说,优化是在分类函数的整个空间中进行的。它有可能提高BCIS的性能,并使校准不同受试者的系统更容易。
摘要。在本文中,我们提出了一个从部分体积(PV)图中合成3D脑T1加权(T1-W)MRI图像的框架,目的是生成具有更多积分率组织边界的合成MRI体积。合成的MRI需要扩大和丰富用于培训脑部分割和相关模型的非常有限的数据集。与当前的最新方法相比,我们的框架利用PV-MAP属性,以指导生成的对抗网络(GAN)来生成更准确和更现实的合成MRI体积。我们证明了在PV-MAP上而不是二进制映射的条件,导致合成MRIS中的精确组织边界更加准确。此外,我们的结果表明,在合成MRI体积中,深灰质区域的表示有所改善。最后,我们表明,在合成图像中反映了引入PV映射的细胞变化,同时保留了准确的组织边界,从而在新的合成MRI体积的数据合成过程中可以更好地控制。
非侵入式脑机接口(BCI)系统允许使用用户的脑电波来控制应用程序,这是我在理论和实践领域研究的基本支柱。我的主要研究方向是深入研究 BCI 系统和神经科学实验软件(MEDUSA©,www.medusabci.com)的开发、不同控制信号(P300、SMR、SSVEP、c-VEP)的处理以及辅助软件(移动和桌面应用程序)的开发,以改善严重运动障碍者的生活质量。除了BCI系统之外,我的研究兴趣还集中在生物医学信号处理(尤其是脑电图)、人工智能和模式识别(机器/深度学习)、计算神经科学和软件工程(Python、Java、JavaScript、C#、MATLAB)。
摘要。目标。本研究对开放脑电图数据集进行了广泛的大脑计算机界面(BCI)可重复性分析,旨在评估现有的解决方案并建立开放且可重复的基准测试,以有效比较该领域。对这种基准的需求在于产生未公开的专有解决方案的快速工业进步。此外,科学文献是密集的,通常具有具有挑战性的评估,从而使现有方法之间的比较艰巨。方法。在一个开放式框架中,在36个公开可用的数据集中对30个机器学习管道(分为原始信号:11,Riemannian:13,深度学习:6)进行了精心重新实现和评估,包括汽车图像(14),p300(15)(15)和SSVEP(7)。该分析结合了统计荟萃分析技术,以进行结果评估,包括执行时间和环境影响注意事项。主要结果。该研究产生了适用于各种BCI范式的原则和鲁棒结果,强调运动图像,P300和SSVEP。值得注意的是,利用空间协方差矩阵的Riemannian方法表现出卓越的性能,强调了大量数据量的必要性,以通过深度学习技术实现竞争成果。全面的结果是公开访问的,为将来的研究铺平了道路,以进一步提高BCI领域的可重复性。意义。这项研究的重要性在于它在建立严格和透明的基准的BCI研究中做出的贡献,为最佳方法论提供了见解,并强调了可重复性在推动该领域进步方面的重要性。
本研究提出了一种在扩展现实 (XR) 环境中同时进行用户身份验证和脑机接口 (BCI) 文盲检测的协议。通过使用包含目标刺激图像的周期性视觉刺激来诱导选择性参与者注意力。事件相关电位 (ERP) 用于用户身份验证,而稳态诱发电位 (SSVEP) 用于识别 BCI 文盲。实验结果表明,10 Hz 增大/缩小字母图像刺激最有效,在用户分类中达到 99% 的准确率。因此,所提出的协议可用于在 XR 环境中建立用户身份验证和 BCI 文盲检测系统。这些发现有望成为 XR 环境中通用神经接口开发的重要基础。
