美国焊接协会(AWS)的所有标准(代码,规格,推荐的做法,方法,分类和指南)都是根据美国国家标准研究所(ANSI)规则制定的自愿共识标准。当AWS美国国家标准被纳入了联邦或州法律法规中包含的文件或制作的一部分时,或其他政府机构的规定,其规定赋予了该法规的全部法律权威。在这种情况下,这些AWS标准的任何更改都必须由具有法定管辖权的政府机构批准,然后才能成为这些法律法规的一部分。在所有情况下,这些标准都具有合同的全部法律权限或其他援引AWS标准的文件。在存在这种合同关系的情况下,必须通过在合同方之间达成协议,与AWS摊位要求的变化或偏离。
经典的金属制造和连接涉及两种不同的途径:一条基于熔化和结合;其他利用塑性变形。要用所需的几何形状制造金属组件,配偶工程师可以加热并融化金属,将其倒入具有预定层形状的模具中,然后通过冷却使其在模具中凝固。这是铸造过程[1]。替代,当金属保留在固态中时,可能会将金属按或将金属锤成所需的形状。这是锻造过程[2]。在铸造更能产生较大且复杂的形状时,宽容会导致改善的机械性能,例如更好的延展性,更高的产量和拉伸强度以及较长的疲劳寿命。加入两个金属工件,材料工程师可以使用弧[3],煤气
摘要:这项研究通过搅拌铸造通过粉煤灰和碳化硅(SIC)钢筋的整合来探索基于铝的复合材料的进步。该过程涉及在700°C的消声炉中熔化合金,逐渐引入粉煤灰和SIC颗粒,同时在450 rpm搅拌12分钟以确保分散体均匀。添加5%SIC和2.5%的粉煤灰导致多种机械性能的显着改善。Tensile强度的显着增强大约增长了约19.56%,而硬度却显示出大约34.67%的大幅增长。此外,疲劳强度显着提高了约26.87%,耐耐磨性的显着增强约为31.45%。这些增强功能强调了整合粉煤灰和SIC钢筋的功效,突出了具有优质机械性能的晚期铝合作材料的潜力。这种方法提出了提高材料性能的有前途的途径,对需要耐用性,强度和耐磨性的各种工业应用产生了影响。
人类IPS细胞(1231A3)在Imatrix-511上保持了(CAT。编号np891-011) - 涂层板和在STEMFIT®培养基中生长(Cat。编号akn02)。细胞,并使用Tryple Select(Thermofisher)(热泡)将其分解为单个细胞,并进行洗涤和计数。然后将单细胞在补充10 µM Y27632的StemFit培养基中以10 5个细胞/ml的播种(Cat。编号04-0012),并以55 rpm的恒定旋转器搅动转移到能够的30 mL一次性生物反应器中。在第2天和第4天收获细胞,并被Tryple Select分散的球体分散,并用锥虫蓝色染色并计数。细胞,并被Tryple Select分散的球体分散,并用锥虫蓝色染色并计数。
铝金属基质复合材料(AMC)是由于其出色的机械性能,轻量级行为和低热膨胀而在汽车和航空航天领域进行不同应用的潜在材料。石墨烯纳米片(GNP)已成为AMC中的首选加固。通过搅拌方法将它们掺入基质中,以生成适合触变的半固体原料。使用L8(2 3)正交阵列的Taguchi设计,检查了Stirrer参数和GNP含量的效果。测试的参数是搅拌速度(300-500rpm),GNP含量(0.3-0.7 wt%)和搅拌时间(5-10分钟)。将GNP /A356复合材料的信噪比(S /N)和硬度用作响应变量。已经确定了三个因素在增强硬度方面的贡献。使用搅拌速度,GNP含量和搅拌时间获得的最佳参数分别为500rpm,0.7Wt。%GNP和5分钟。
航空航天飞行面板必须提供低质量的高强度。对于铝面板,通常以锻造板开始并去除大部分材料以达到所需的结构,包括带有所需的钢筋肋骨模式的较薄板。作为替代方案,本研究实现了杂种制造,其中铝首先仅使用添加摩擦搅拌(AFSD)在肋骨位置沉积在底板上。然后使用结构化的光扫描来测量印刷几何形状。此几何形状最终用作计算机数值控制(CNC)加工的库存模型。本文详细介绍了由:AFSD组成的混合制造过程,以打印预成式的结构化光扫描,以生成库存模型和工具路径,三轴CNC加工以及零件几何和显微结构的后处理测量。©2023作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(https://creativecommons.org/licenses/by-nc-nc-nd/4.0)下的开放式访问文章。关键字:混合制造,添加摩擦搅拌沉积,结构化扫描,加工
1 Schilling C、von Strombeck A、dos Santos JF、von Heesen N。《搅拌摩擦点焊静态性能的初步研究》。第二届搅拌摩擦焊国际研讨会 (2ISFSW) [Internet]。瑞典哥德堡:英国剑桥焊接研究所 (TWI);2000 年。网址:http://www.fswsymposium.co.uk/EasySiteWeb/GatewayLink.aspx?alId=1238963
一项多中心、多读者研究评估了合成创建的短 tau 反转恢复 (STIR) 脊柱 MR 图像与获取的 STIR 的比较。基于医学数字成像和通信 (DICOM) 的 DL 应用程序从矢状 T1 和 T2 图像生成了合成创建的 STIR 系列。三名神经放射科医生、一名肌肉骨骼 (MSK) 放射科医生和一名普通放射科医生对 STIR 质量进行评级并对疾病病理进行分类;评估了通常在创伤中用 STIR 评估的发现的存在/缺失情况。放射科医生以盲法随机方式评估了获取的 STIR 或合成创建的 STIR,并设有 1 个月的洗脱期。使用 10% 的非劣效性阈值评估获取和合成创建的 STIR 的可互换性。对于分类,随机引入合成创建的 STIR 预计会导致读者间一致性下降 3.23%。对于创伤,读者之间的一致性总体提高了 11.9%。两者的置信下限都超过了非劣效性阈值,表明合成 STIR 与获取的 STIR 具有可互换性。结果显示,合成 STIR 的图像质量得分高于获取的 STIR(P <.0001)。研究人员得出结论,合成 STIR 脊柱 MR 图像在诊断上可与获取的 STIR 互换,同时提供明显更高的图像质量,表明常规临床实践的潜力。研究人员还避免使用 GAN,因为 GAN 很容易在合成图像中引入源图像中不存在的结构。38
摘要 金属基复合材料 (MMC) 因其增强的机械性能而广泛用于各种应用。MMC 能够减轻结构重量,从而降低燃料消耗,因此在地面运输和航空领域尤其具有吸引力。在本研究中,通过搅拌铸造 [SC] 路线生产了用二硼化锆 (ZrB 2 ) 增强的 AA2017。增强颗粒 ZrB 2 以不同的重量百分比 0、5、10 和 15 混合。根据 ASTM 标准,对铸造样品进行机械表征,例如显微硬度和拉伸测试以及扫描电子显微镜 (SEM) 分析。SEM 分析表明 ZrB 2 颗粒在 AA2017 基体中分散均匀,团聚较少。机械测试结果显示性能有所改善,并且这是针对 AA2017-15wt.% ZrB 2 合成复合材料实现的。显微硬度测试显示,与基础铸态合金相比,VHN 值增加了约 101 (40.28%)。极限抗拉强度 (UTS) 也比铸态合金提高了约 155 MPa (59.79%)。