陶瓷金属复合材料具有重量轻、成本低、耐磨、耐腐蚀、强度高等特殊性能,是传统材料中颇具前途的先进材料。搅拌铸造是制造铝基复合材料成本最低、最简单的方法之一。搅拌铸造的主要局限性是增强陶瓷颗粒(团聚体)在金属基体中的分布不良、制造过程中复合材料的孔隙率以及陶瓷颗粒与熔融金属的润湿性。提高陶瓷金属基复合材料 (CMMC) 的搅拌铸造参数是许多研究的主要目标。本文将详细讨论搅拌铸造工艺,其中包括影响增强体均匀分布、制造过程中复合材料的孔隙率以及陶瓷金属基复合材料的力学性能的参数。
摘要:包括汽车,航空航天,军事和航空在内的制造业正在密切关注对具有更好特性的复合材料的需求。复合材料由于其高质量,低成本的材料具有超出特征和低重量而在行业中大量使用。因此,由于其低成本,出色的耐磨性和出色的强度与重量比,铝基材料比其他传统材料优先。但是,可以使用合适的增强剂进一步改善基于Al的材料的机械特性和磨损行为。各种增强剂,包括晶须,颗粒,连续纤维和不连续的纤维,由于具有与裸合金相当的摩擦学和机械行为而被广泛使用。此外,可以通过优化处理方法的过程参数以及加固的数量和类型来获得复合材料的整体特征的进步。在各种可用的技术中,搅拌铸造是制造复合材料的最合适技术。增强量控制复合材料的孔隙率(%),而增强类型通过改善复合材料的整体特性来识别与Al合金的兼容性。粉煤灰,SIC,TIC,AL 2 O 3,TIO 2,B 4 C等。是AMMC中最常用的增强剂(铝金属基质复合材料)。当前的研究强调了不同形式的加固如何影响AMMC,并评估增强对复合材料的机械和底环特性的影响。
文章历史记录:本研究探讨了用氧化铝纳米颗粒加强AL-6061铝合金的摩擦搅拌加工(FSP),分析了处理参数的影响,包括横向速度,旋转速度和通过的速度 - 通行数 - 最终的张力强度,产量强度,产量强度,固有强度,固有强度,固有强度,固有速度和压缩率。使用CNC铣床,以900、1100、1300和1500 rpm的旋转速度进行FSP,遍历速度为10、15和20 mm/min。使用了先进的机器学习模型,即SRS优化的长期短期记忆(LSTME),用于预测处理后材料的性能,达到0.911的高R²值的最终强度为0.951,屈服强度为0.951,固有频率为0.953,固有频率为0.985,为0.985进行阻尼比。关键发现表明,FSP改善了阻尼特性和机械性能,在所有通过中,在900 rpm处观察到最大阻尼有效性。氧化铝纳米颗粒增强了阻尼功能,而增加的旋转速度则促进了晶粒的细化,从而产生了更强,更具变形的抗耐性材料。LSTME模型的表现优于其他机器学习方法,在训练中达到0.965至0.993的R²值,测试中达到0.911至0.987。这些结果证明了将FSP与机器学习相结合以优化高性能应用的材料属性的功效。
日常生活中先进复合材料的使用量不断增加,并取代了现有的整体材料。这些复合材料是根据人类的特定应用需求而设计和制造的,也符合标准要求。在本研究中,从农业和工业废弃物中提取的陶瓷增强材料铝金属基复合材料,即AA7075/焊渣和 AA7075/稻壳灰通过液态金属搅拌铸造路线制造,增强材料含量在基体中从 2 到 12(wt.%)不等。测量了 AA 7075 金属基复合材料的机械和微观结构特性,并与基材进行了比较。结果表明,复合材料的机械强度和硬度有所提高。在增强颗粒浓度较高的情况下,冲击能量也显著提高。复合材料的冲击能量在 9% 和 12% 时增加到 3 J,12% 焊渣 MMC 获得的最大抗拉强度为 173 MPa。12% 焊渣 MMC 获得的最高硬度为 98 BHN。此外,微观结构结果反映了搅拌铸造工艺的显著晶粒细化,基质中具有良好的界面特性,农用增强材料颗粒分散均匀。关键词:力学性能;工业废弃物;AA7075;农业废弃物;微观结构分析
摘要:在现代计算科学中,机器学习和优化过程之间的相互作用标志着最重要的发展。优化在机械工业中起着重要作用,因为它可以降低材料成本、减少时间消耗并提高生产率。最近的工作重点是对搅拌摩擦焊接工艺进行优化任务,以获得搅拌摩擦焊接接头的最大极限抗拉强度 (UTS)。为此选择了两种机器学习算法,即人工神经网络 (ANN) 和决策树回归模型。输入变量为工具转速 (RPM)、工具移动速度 (mm/min) 和轴向力 (KN),而输出变量为极限抗拉强度 (MPa)。观察到,在人工神经网络的情况下,训练和测试集的均方根误差分别为 0.842 和 0.808,而在决策树回归模型的情况下,训练和测试集的均方根误差分别为 11.72 和 14.61。因此,可以得出结论,ANN 算法比决策树回归算法提供更好、更准确的结果。
STIR 值是土壤耕作强度等级。它利用速度、深度、表面扰动百分比和耕作类型参数来计算用于种植作物或轮作的系统的耕作强度等级。STIR 等级往往显示土壤耕作强度的差异
了解氧化铝增强铝复合材料 (Al-A2O3) 的循环行为对于其在不同工业领域的进一步应用至关重要。本研究重点关注通过放电等离子烧结 (SPS) 方法和摩擦搅拌焊接 (FSW) 相结合生产的 Al-氧化铝纳米复合材料的循环行为。添加的氧化铝总含量为 10%,是纳米和微米粒子的组合,其比例因样品而异。使用光学显微镜 (OM)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 表征 SPSed 样品的微观结构。表征了加工后的复合材料样品的微观结构并研究了其机械行为。微观结构研究表明,氧化铝的纳米粒子主要分布在晶粒边界和晶粒内部,而微米级粒子主要沉积在晶粒边界上。此外,还根据增强体尺寸和纳米粒子添加百分比分析了生产样品的硬度和拉伸性能。结果表明,纳米复合材料的力学性能和疲劳性能主要取决于初始阶段的材料性能和搅拌摩擦焊的应用条件,如转速和运动速度。纳米复合材料的断裂表面呈现出韧性-脆性复合断裂模式,韧窝更细,纳米弥散体的作用尤为突出。
动态再结晶完成后,在附加塑性变形热的作用下,部分较大晶粒吞噬较小晶粒并融合为较大晶粒,导致晶粒长大。由于塑性变形热小于摩擦热输入,因此增加进给速率引起的晶粒尺寸增大较小。发生动态回复和连续动态再结晶,其特征是亚晶粒形成和大晶粒相变比例增加。随着应变的增加,大晶粒相变转变为大晶粒相变,大晶粒相变数量分数越大,表示再结晶程度越高。如图7所示,N0.1和NO.2的大晶粒相变数量分数大于NO.3,说明NO.1和NO.2的再结晶程度
北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Priyanka Agrawal 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Mageshwari Komarasamy 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Yongo Sohn 中佛罗里达大学材料科学与工程系和先进材料加工与分析中心,美国佛罗里达州奥兰多 Rajiv S. Mishra 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 北德克萨斯大学先进材料与制造工艺研究所,美国德克萨斯州登顿
其他应用说明:底漆:充分搅拌 A 部分成分,确保容器底部没有颜料残留且颜色均匀;搅拌时将第 8 部分(锌粉)添加到 A 部分;无需稀释。中漆:充分搅拌每个成分,确保容器底部没有颜料残留且颜色均匀;将 4 份 A 部分基料与 1 份 8 部分活化剂混合。面漆:充分搅拌每个成分,将 A 部分与第 8 部分混合;用水稀释至 15% 以达到均匀流动;喷涂前留出 30 分钟的吸收时间。