摘要 带隙工程是开发光电器件的关键方法,特别是对于近红外 (NIR) 应用,其中精确控制材料的电子和光学特性至关重要。本研究探讨了三种 III-V 半导体合金——砷化镓锑 (GaAsSb)、砷化镓锑氮化物 (GaAsSbN) 和砷化镓铝 (GaAlAs)——在定制带隙以满足 NIR 器件特定需求方面的潜力。GaAsSb 通过调整锑含量提供可调带隙,使其成为 NIR 光电探测器和激光二极管的多功能材料。GaAsSbN 中的氮进一步降低了带隙,增强了其对长波长应用的适用性,并提供与 GaAs 基板更好的晶格匹配。GaAlAs 以其稳定性和与 GaAs 的兼容性而闻名,可用于形成异质结和量子阱,从而实现高效的载流子限制和发射控制。通过改变这些合金的成分,工程师可以实现精确的带隙调节,从而优化一系列 NIR 波长范围内的器件性能。本摘要强调了成分变化、应变工程和量子阱设计在开发先进 NIR 光电器件中的重要性。尽管存在材料质量和热管理等挑战,但这些材料的持续改进对电信、医学成像和传感技术中的下一代 NIR 应用具有重要意义。简介 带隙工程是半导体技术中的一项基本技术,可以精确操纵材料的电子和光学
相互作用,即它们不带任何电荷。因此,它们是暗粒子,因为它们不发光,这是一种电磁现象,并且是物质,因为它们像正常物质一样具有质量,因此通过引力相互作用。暗能量是一种未知的能量形式,它以最大的尺度影响着宇宙。它存在的第一个观察证据来自对超新星的测量,这表明宇宙并不是以恒定的速度膨胀,而是宇宙的膨胀正在加速。因此,陈述 1 是正确的。
Lingjun Shu,Jingxuan Yin,Zhemin Gon,C Gao,Yongxing Liu等。设计了阴离子和阳离子共掺杂的Na3SB(WM)(X)S-4(M = Cl,Br,I)硫化物电解质,具有改善的电导率和稳定的界面质量。道尔顿交易,2023,10.1039/d3dt01151h。hal-04115631
在耐断层拓扑回路实现实验中的摘要是将纳米线与最小疾病相互连接。合并形成的平面外依赖二胺(INSB)纳米线网络是潜在的候选者。然而,它们的生长需要一个外来物质茎通常由INP – INA制成。该茎施加了局限性,其中包括限制纳米线网络的大小,通过晶界和杂质掺入引起障碍。在这里,我们省略了INP底物上无茎INSB纳米线网络的生长。为了使生长无茎,我们表明在INSB生长之前,需要使用Arsine(Ash 3)进行预处理。通过用纳米腔的选择性区域掩膜对底物进行构图,可以实现无茎纳米线生长的高收益,其中包含纳米线产生的受限金液滴。有趣的是,这些纳米线是弯曲的,由于合并故障而构成了互连纳米线网络的挑战。我们将这种弯曲归因于INSB纳米线中的砷杂质和插入式晶格不匹配的非均匀掺入。通过调整生长参数,我们可以减轻弯曲,从而产生大型和单晶的INSB纳米线网络和纳米片。这些纳米结构的大小和晶体质量的提高扩大了该技术制造先进量子设备的潜力。
氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。
拓扑材料引起了极大的关注,因为它们在宽带和快速的光响应中,尤其是在红外状态下的潜力。然而,这些系统中的高载体浓度通常会导致光生载体快速重组,从而限制了光疗力。在这里,我们证明了MNBI 2 TE 4中的SB掺杂有效地降低了载体浓度并抑制电子孔重组,从而显着改善了可见的中型红外光谱的光电性能。最佳掺杂的MN(BI 0.82 SB 0.18)2 TE 4光电探测器在1550 nm时的响应时间为18.5μs,响应时间为0.795 mA W -1,响应时间为3.02 mA W -1,响应时间为4μm,响应时间为9.0μm。这些值与未居式MNBI 2 TE 4相比,这些值近两个数量级改善。我们的结果重点介绍了乐队工程作为增强基于拓扑材料的光电探测器的红外绩效的有效策略,为高敏性红外检测开辟了新的途径。关键词拓扑绝缘子,红外光电探测器,带工程,VDW材料,光伏效果简介
全球对化石燃料以外替代能源资源的需求由于其消耗的耗竭和环境影响而被放大。最近的评估发现,在能源转化步骤中,全球72%的全球能源消耗损失。1,重大损失被指定为废热,需要回收以提高全球能源可持续性。因此,热电(TE)材料通过将废热转换为电力并作为无噪声和无噪声的固态冷却器来使其成为一种可持续和可靠的能源引起了极大的兴趣。2热电效率取决于功绩的无量纲热电图,ZT = A2σT /κ,其中a,σ,T和κ分别是Seebeck系数,分别是电导率,绝对温度和总导电性。3材料的热电效率可以通过
富 Ge GeSbTe (GGST) 合金的开发显著提高了相变存储技术所需的高温稳定性。先前对 Sb/Te 比小于 1(Sb = Te , 1)的 GeSbTe (GST) 材料中 Ge 富集的研究强调了立方 Ge 和立方 GST 相的分离。这种分离的立方 GST 相是亚稳态的,呈现出多晶结构,其晶粒边界无序,可能导致结构弛豫,进而导致漂移现象。在这项工作中,利用电阻率测量、拉曼光谱和原位 x 射线衍射分析,我们首次证明 Sb/Te 比大于 1(Sb = Te . 1)的 GGST 在退火时会直接形成具有高生长速度的 GST 六方相,绕过立方亚稳态相。结合 Ge 富集,Sb = Te 成核的活化能值增加。 1 GGST 合金确保了非晶相的高稳定性。最后,氮的引入进一步稳定了系统以防止结晶,而不会损害高晶体生长速度和 Sb = Te 合金中稳定的 GST 六方相的形成。1. 这些结果证明了可以调整富 Ge GeSbTe 合金中偏析相的晶体结构,将非晶相在高温下的稳定性与目标 GST 相的高结晶速度和均匀性(具有较大的晶粒)相结合。
MID-IR波长范围(通常定义为跨度为3至13 µm)覆盖了各种大气气体的分子吸收区域。因此,MID-IR集成光子学,即将复杂和先进的光学功能整合到芯片上,这代表了开发基于光谱的气体检测的紧凑,成本效益的仪器的有希望的途径[1-6]。这些结构通常是用光刻技术制造的,这些技术限制了所得设备的可重新配置和可调性。通过在介电波导顶部涂上额外的层[7],证明了一些修剪后的后处理能力。走得更远,并为这些结构启用真正的后制成调音机制,一种有吸引力的方法是将它们与相变材料(PCM)相结合。这些材料可以可逆地在具有不同光学特性的无定形和晶体相之间切换。常规PCM的众所周知的例子是GE 2 SB 2 TE 5(GST)[8,9]和VO 2 [10-14]。GST由于其出色的特征而引起了强烈的关注,包括其两个阶段(∆ n> 2.5),低切换温度(〜180°C)之间的近红外折射率对比度以及保持其状态而无需任何电源的能力。在电信C波段上运行的许多集成设备,例如光学记忆[15],模式转换器[16],反射调节器[17],环谐振器[18],窄带过滤器[19]或基于GST的相位变速器[20] [20]。然而,尽管不断研究和提高其潜力的努力,但其可用性仍然主要限于要求光的应用
特征在不同入射的光子能量下显示最大值,这是由于表面和散装特征的相对贡献4 f状态的部分密度而产生的。the ce 3 d –4 f m边缘的XAS还显示了相应的最终状态f 1和f 2特征。可以使用完整的多重计算与简化的单个Imberity Anderson模型方法一起模拟t = 25 K和300 K之间XAS光谱的弱温度依赖性。计算确认了近托筛选,并允许在CEAGSB 2中定量批量ce 4 f电子计数。CE 5 s状态显示了一种交换分裂,可反映CE 4 F状态的局部磁矩。总体结果表征了体积和表面敏感的CE 4 F状态,并表明了近代效应在形成CEAGSB 2中适度增强的重型载体载体中的作用。