在过去的几十年中,互补的金属 - 氧化物 - 氧化 - 氧化核(CMOS)技术一直是现代综合电路发展的推动力。增强栅极静电控制以提高对短通道效应(SCE)的免疫力(尤其是在积极缩放晶体管技术的发展中)的关键策略。这包括开发高等效氧化物厚度(EOT)缩放的高κ /金属门技术,以及超薄体,鳍和堆叠的纳米片通道晶体管;在3 nm技术节点1之外,半导体工业(遵循FIN场效应晶体管技术)目前正在采用堆叠的纳米表晶体管。要进一步扩展长度尺寸并保持良好的驱动电流,至关重要的是抑制SCE。可以使用增加数量的薄堆积通道来实现这一目标。然而,常规半导体晶体管的性能迅速降低到硅的3 nm厚度低于3 nm的厚度,而INGAAS的性能降低了10 nm。二维(2D)半导体是一种替代通道材料,与传统的半导管相比,单层厚度和单层厚度较高,在单层厚度上具有更高的迁移率。但是,2D材料缺乏高品质的大区域CMOS兼容生长技术。也很难在其范德华表面形成介电。此外,这些材料很难浓缩,并且在Schottky金属/半导体触点处引起的高接触分析。特别是原子层氧化物半导体,尤其是无定形im-gallium-Zinc氧化物(Igzo) - 用于平面晶体管(TFTS)中的半导体通道材料(用于平面式式施用应用程序12)。但是,尽管是高批量制造的成熟技术,但氧化物半导体很少被视为用于缩放高性能晶体管的Channel材料。这是由于它们的低电荷载流子迁移率约为10 cm 2 v -1 s –1,并且在质量生产中使用时,它们通常需要多达几十纳米的通道厚度13。然而,对于单一三维(3D)整合应用14-21的CMOS后端(BEOL)中氧化物半导体晶体管的使用引起了兴趣。
摘要 - 基于域墙(DW)运动的旋转逻辑设备提供了灵活的体系结构,以存储和携带逻辑信息在电路中。在此设备概念中,信息以多个磁性隧道连接(MTJ)共享的磁道磁态进行编码,并通过DW运动处理。在这里,我们证明可以使用新型的MTJ堆栈来实现这种基于纳米级DW的逻辑设备的全电动控制。除了各向同性的场驱动运动外,我们还显示了由电流驱动的DWS的方向运动,这是逻辑操作的关键要求。使用DW运动对逻辑门的完整电气控制。我们的设备在全晶片的IMEC的300毫米CMOS Fab中制造,这清除了大规模集成的路径。因此,此概念证明为逻辑和神经形态应用提供了高性能和低功率DW设备的潜在解决方案。
该演讲是由Redwire Corporation(“ Redwire”,“ RDW”,“ Company”,“ We”,“我们”,“我们”和“我们的”)编写的,与拟议的业务结合与Edge Automenty Intermediate Holdings,LLC(“ Edge”)及其相关交易(“提出的商业组合”,“交易”,“或“组合”)。其他信息以及在何处找到与本文所述的拟议业务组合有关的确定协议以及交易的材料条款的摘要,将在当前关于8-K或附表14A的报告中提供,将向证券交易委员会提交(“ SEC”)。Redwire将向SEC提交有关Redwire股东特别会议的代理声明(“代理声明”)。敦促股东仔细阅读代理声明,并在可用时将其全部提交给SEC的任何其他相关文件,因为他们将包含有关Redwire,Edge自治,交易和相关事项的重要信息。股东将能够通过SEC在www.sec .gov上维护的网站上免费获得代理声明和SEC提交的其他文件的免费副本。此外,投资者和股东将能够获取Redwirespace.com上Redwire网站投资者关系部分向SEC提交的SEC的其他文件的免费副本。
在世界某些地区,使用生物质进行家庭取暖十分普遍。生物质是一种可再生能源 (RES),由于其为二氧化碳中性能源,因此被视为气候友好型燃料。然而,住宅区木质生物质的燃烧是环境空气污染的主要因素,主要是细颗粒物。这是一个严重的健康问题,需要加以解决才能改善空气质量。使用烟囱测量的现有排放数据计算出的空气质量颗粒物浓度之间也存在差距,这一点需要加以解决。大气中有机颗粒物的浓度高于报告的排放因子预期值,但不同国家登记的排放因子之间也存在差距,这强调了各国需要制定类似的标准,或者至少需要更多关于排放数据的信息。
摘要 — 自旋电子逻辑器件最终将用于混合 CMOS-自旋电子系统,该系统通过传感器在磁场和电域之间进行信号相互转换。这强调了传感器在影响此类混合系统整体性能方面的重要作用。本文探讨了以下问题:基于磁隧道结 (MTJ) 传感器的自旋电子电路能否胜过其最先进的 CMOS 同类电路?为此,我们使用 EPFL(洛桑联邦理工学院)组合基准集,在 7 nm CMOS 和基于 MTJ 传感器的自旋电子技术中合成它们,并在能量延迟积 (EDP) 方面比较这两种实现方法。为了充分利用这些技术的潜力,CMOS 和自旋电子实现分别建立在标准布尔门和多数门之上。对于自旋电子电路,我们假设域转换(电/磁到磁/电)是通过 MTJ 执行的,计算是通过基于域壁 (DW) 的多数门完成的,并考虑了两种 EDP 估计方案:(i) 统一基准测试,忽略电路的内部结构,仅将域传感器的功率和延迟贡献纳入计算,以及 (ii) 多数-反相器-图基准测试,还嵌入了电路结构、相关关键路径延迟和 DW 传播的能量消耗。我们的结果表明,对于统一情况,自旋电子路线更适合实现具有少量输入和输出的复杂电路。另一方面,当也通过多数和反相器综合考虑电路结构时,我们的分析清楚地表明,为了匹配并最终超越 CMOS 性能,MTJ 传感器的效率必须提高 3-4 个数量级
此外,当在这些先进节点中考虑单粒子瞬变 (SET) 时,对软错误的敏感性会变得更加糟糕。此类 SET 可能是由高能粒子(如宇宙中子)撞击半导体器件敏感区域引起的,这会影响电路性能。16,17 例如,当粒子撞击硅衬底时,它们会产生二次电子-空穴对,这些电子-空穴对可被周围的 pn 结收集,从而影响器件行为。18,19 发射的阿尔法粒子主要是由于芯片封装中的铀和钍杂质的放射性衰变。当阿尔法粒子穿过半导体器件时,电子会沿着阿尔法粒子的轨迹从晶格位置脱落。20,21 临界电荷是翻转逻辑所需的最小电荷。除了单粒子放电 (SET) 之外,撞击还可能导致单粒子翻转 (SEU),这两者都会妨碍电路的正常运行,并导致软错误。22-25 质子的直接电离可能会导致临界电荷 (Q crit) 较低的器件发生 SEU。26
研究了快速热退火对射频溅射系统沉积的高 k HfO 2 超薄膜结构和电学性能的影响。分别在氧气和氮气环境下研究了薄膜特性以获得最佳快速热退火温度,以获得作为 MOS 器件结构的最佳电学效果。使用傅里叶变换红外光谱 (FT-IR) 详细研究了温度诱导退火对 HfO 2 /Si 界面的影响。分别通过椭圆偏振仪、XRD 和 AFM 研究了薄膜厚度、成分和微观结构,并显示了退火对这些参数的影响。采用 Si/HfO 2 /Si MOS 电容器结构研究了退火电介质薄膜的 I-V 和 C-V 特性。结果表明,在氮气环境下采用快速热退火 (RTA) 的 HfO 2 /Si 堆栈比在氧气环境下表现出更好的物理和电学性能。结果表明,RTA 改善了 HfO 2 /Si 的界面特性和 HfO 2 超薄膜的致密化。在氮气和氧气中分别以 700 C 退火后,沉积的薄膜为非晶态和正交晶系。我们发现,氮气退火样品的等效氧化物厚度、界面态密度、电容-电压滞后和漏电流均有所降低;此外,在正电压偏置和温度应力下,电荷俘获也几乎可以忽略不计。本文对结果进行了介绍和讨论。2011 Elsevier BV 保留所有权利。
您的姓名、公司和电子邮件地址将与 Scaled Agile, Inc. 共享,用于课程实施,包括测试和认证。您的信息将根据 Scaled Agile 隐私政策(网址为 https://www.scaledagile.com/privacy-policy/)使用。
与外国,英联邦和发展办公室(FCDO),能源安全和净零(DESNZ),国际环境与发展研究所(IIED),第三代环保主义(E3G)和Southsouthnorth(SSN)
参考:Scaled Agile Inc.《哈佛商业评论》和《Accelerate:为快速发展的世界构建战略敏捷性》John P. Kotter @Biased77