Ø双重重点:公正的过渡必须是:首先,在标准和定价方面,金融系统转型的一部分;其次,公共和私营部门专门投资的优先事项。UNFCCC可以领导。Ø财务政策:财政部长与90多个国家的气候行动联盟已将正义过渡确定为跨裁切优先事项。整合到碳定价和化石燃料补贴改革中。财政空间是关键。Ø金融包容性:获得财务对于农业,分布式能源,住房和运输的过渡至关重要,尤其是妇女和青年。中央银行可以通过包容性的绿色金融政策来支持这一点。Ø国际合作:到目前为止,4公正的能源过渡合作伙伴关系提供了有关资金类型(赠款,优惠,商业)和支持发展中国家所需的国际金融数量的课程。Ø投资者:超过700个投资者,负责68万亿美元的资产,包括他们对业务净净绩效的期望。
2。Scope .......................................................................................................................... 6
插槽的关注表明,在计算机视觉任务中,以对象为中心的表示绩效,而无需任何超级视觉。尽管其由组成建模带来的以对象为中心的结合能力,但作为一种阻止的模块,插槽的注意力缺乏产生新场景的能力。在本文中,我们构成了插槽-VAE,这是一种生成模型,它通过用于对象以对象结构化的场景的形式的层次结构VAE框架吸引了插槽的关注。对于每个图像,模型同时渗透一个全局场景表示形式,以将高级场景结构和以对象为中心的插槽表示为嵌入单个对象组件。在生成期间,插槽代表是通过全局场景代表生成的,以确保相干场景结构。我们对场景产生能力的广泛评估表明,就样本质量和场景结构的精度而言,插槽VAE的表现优于基于老虎机表示的生成基线。
摘要 — 遥感图像场景分类在广泛的应用中发挥着重要作用,因此受到了广泛关注。在过去的几年中,人们做出了巨大的努力来开发各种数据集或提出各种用于遥感图像场景分类的方法。然而,仍然缺乏有关场景分类数据集和方法的文献的系统综述。此外,几乎所有现有数据集都存在许多局限性,包括场景类别和图像数量规模小、图像变化和多样性不足以及准确性饱和。这些限制严重限制了新方法的发展,尤其是基于深度学习的方法。本文首先对最近的进展进行了全面的回顾。然后,我们提出了一个大规模数据集,称为“NWPU-RESISC45”,这是西北工业大学 (NWPU) 创建的遥感图像场景分类 (RESISC) 的公开基准。该数据集包含 31,500 张图像,涵盖 45 个场景类,每个类有 700 张图像。提出的 NWPU-RESISC45 (i) 在场景类和总图像数量上是大规模的,(ii) 在平移、空间分辨率、视点、物体姿势、照明、背景和遮挡方面具有很大的变化,并且 (iii) 具有很高的类内多样性和类间相似性。该数据集的创建将使社区能够开发和评估各种数据驱动算法。最后,使用提出的数据集评估了几种代表性方法,并将结果报告为未来研究的有用基线。索引术语 — 基准数据集、深度学习、手工制作的特征、遥感图像、场景分类、无监督特征学习。
项目说明恢复场景的属性,例如许多计算机视觉和计算机图形应用程序中的形状,材料和照明属性是至关重要的任务。此任务称为逆渲染,它可以启用对象插入[1],场景重新定义[2]和场景编辑[3]。在学习场景的3D表示方面的最新进展显示出令人印象深刻的新型合成结果,例如NERF [4]和3D高斯裂口[5]。但是,由于场景属性被烘烤到辐射字段中,这些表示不可重复 /可编辑。许多最先进的解决方案[6,7,8]提出了反向渲染管道,使这些3D表示可以编辑。尽管取得了这种进步,但当前的方法通常与铸造阴影,镜头亮点和其他复杂的照明相互作用困难。基于扩散的生成模型[9]已成为一种有希望的视觉生成方法。扩散模型可以更改许多图像方面,例如图像样式[10]或将前景对象融合到背景[11],重新贴上场景[12],编辑特定对象的颜色[13]等。这种适应性强调了扩散模型有效地学习和操纵各种内在场景的潜力,包括材料和照明条件,同时维持光真相。它们在编辑任务中的用法会导致灵活的表示形式,从而可以操纵场景属性[14,15]。此实习将着重于开发利用扩散模型的方法来解开和操纵内在的场景属性,包括材料和照明。实习生将探索新颖的方法,以产生完全可编辑且可重新确定的表示形式。特定目标包括:
图形结构的场景描述可以在生成模型中有效地使用,以控制生成的图像的组成。以前的方法基于图形卷积网络和对抗方法的组合,分别用于布局预测和图像生成。在这项工作中,我们展示了如何利用多头关注来编码图形信息,以及在潜在的图像生成中使用基于变压器的模型可以提高采样数据的质量,而无需在训练稳定性方面采用后续的对抗模型。所提出的方法,具体来说,完全基于用于将场景图编码为中间对象布局的变压器体系结构,并将这些布局解码为图像,通过矢量定量的变异自动编码器所学到的较低维空间。我们的方法在最新方法中显示出改进的图像质量,以及从同一场景图中的多代人之间的较高程度的多样性。我们在三个公共数据集上评估了我们的方法:视觉基因组,可可和CLEVR。我们在可可和视觉基因组上分别达到13.7和12.8的成立分数和52.3和60.3的FID。我们对我们的贡献进行消融研究,以评估每个组件的影响。代码可从https://github.com/perceivelab/trf-sg2im获得。
lltrna 于 2021 年 11 月成立,自称是“世界上第一家 tRNA 平台公司”。通过设计转移 RNA 分子(蛋白质合成的细胞信使),这家初创公司获得了 5000 万美元的初始融资,旨在解决可能引发各种疾病的错误蛋白质生产机制。但 Alltrna 并不是唯一一家追求基于 tRNA 的疗法的公司。ReCode Therapeutics、Shape Therapeutics 和 Tevard Biosciences 都先于它而来;随着 hC Bioscience 的到来,该领域继续扩大,这家初创公司于 2 月底以 2400 万美元的融资从隐身模式中脱颖而出,计划用 tRNA 对抗癌症和罕见疾病。所有这些公司都至少在一定程度上专注于设计 tRNA 以绕过过早停止信号并改为整合所需的氨基酸。这种过早终止密码子的作用就像句子中间放错的句号,会混淆信使 RNA (mRNA) 中编码的信息,约占所有遗传疾病的 11%。因此,从理论上讲,仅一个“抑制” tRNA 就可能治愈数千种不同的罕见遗传疾病,每种疾病都是由相同类型的截断“无意义”突变引起的,这些突变会导致基因表达错误。非营利性囊性纤维化基金会的研究和药物发现战略顾问 William Skach 表示:“如果可以安全地做到这一点,那么它真的为一整类新疗法打开了大门。”Alltrna 的创始 CEO 兼董事 Lovisa Afzelius 补充道:“它释放了一种能力,可以满足那些原本被完全忽视的患者群体的未满足需求。”然而,尽管 tRNA 技术在临床前具有诸多前景,但目前尚不确定该平台是否会胜过小分子“读通”药物,如 Translarna (ataluren),这是一种在欧洲和巴西获批用于治疗无义突变介导的杜氏肌营养不良症的药物。此外,正在开发的基因编辑策略也可能与 tRNA 药物相媲美。“我们还不知道抑制 tRNA 在体内的功效,”阿拉巴马大学伯明翰分校的分子遗传学家 Kim Keeling 指出,他仍在继续寻找具有抑制 tRNA 的化合物
人类对世界的看法是由多种观点和方式塑造的。许多现有数据集从某个角度专注于场景理解(例如以中心的或第三人称的视图),我们的数据集提供了一个全景视角(即具有多种数据模式的多个观点)。具体而言,我们封装了第三人称全景和前视图,以及以富裕方式,包括视频,多频道音频,定向双耳延迟,位置数据数据和文本场景描述,在每个场景中,呈现世界的全面实现,呈现了全世界的全面实现。据我们所知,这是第一个涵盖具有多种数据模式的多个观点的数据库,以模仿现实世界中如何访问每日信息。 通过我们的基准分析,我们在建议的360+x数据集上介绍了5个不同的场景理解任务,以评估综合场景理解中每种数据模式和观点的影响和好处。 我们希望这个独特的数据集能够扩大理解场景的范围,并鼓励社区从更多样化的角度解决这些问题。据我们所知,这是第一个涵盖具有多种数据模式的多个观点的数据库,以模仿现实世界中如何访问每日信息。通过我们的基准分析,我们在建议的360+x数据集上介绍了5个不同的场景理解任务,以评估综合场景理解中每种数据模式和观点的影响和好处。我们希望这个独特的数据集能够扩大理解场景的范围,并鼓励社区从更多样化的角度解决这些问题。
犯罪现场重建 (CSR) 是刑事调查的重要组成部分,需要仔细检查可用数据以查明导致犯罪的事件链。自人工智能 (AI) 出现以来,对使用基于 AI 的技术进行犯罪现场重建的需求不断增加。我们比较了基于 AI 的犯罪现场重建系统的发展、缺点和潜在应用。我们发现机器学习模型、计算机视觉模型、自然语言处理模型、深度学习模型和图形分析模型在犯罪现场重建方面都取得了显著进展。然而,使用基于 AI 的技术也存在局限性,包括需要大量高质量数据、数据或算法中可能存在偏差以及结果的可解释性。为了克服这些限制,未来的研究应该侧重于开发更强大、更透明的基于 AI 的模型,这些模型集成了多种技术并对结果提供清晰的解释。在过去的几十年里,3D 建模一直是广泛研究的主题。总体而言,基于人工智能的技术有可能彻底改变犯罪现场重建,但需要进一步研究以优化其在刑事调查中的应用。这篇比较评论探讨了人工智能现在和未来在法医科学中的应用。