这项研究被设计为在AcıbademAltunizade医院,妇产科和妇科部门进行的回顾性队列研究。孕妇在2018年至2023年之间在外诊所在外生诊所进行了产前护理,构成了该研究的人口。选择了无细胞DNA测试进行非整倍性筛查并患有单胎怀孕的女性。对电子数据库的关键字搜索使用关键字“无细胞的胎儿DNA”和“ NIPT”确定了案例。从电子病历中提取了母子和胎儿特征,无细胞的胎儿DNA检测结果以及妊娠和新生儿结局数据。涉及与所有相关国家法规和机构政策相关的人类受试者的研究,并符合赫尔辛基宣言的宗旨(2013年修订),并已由作者研究所审查董事会(AcıbademmehmetAliaydınlararaydınlarraryUniversity)批准
• 向上转换和向下转换(广泛用于 UVM 验证环境) • UVM 基类库(BCL)中的本地和受保护(隐藏) • UVM BCL 中的静态类方法 • UVM BCL 中的外部方法 • UVM BCL 中的单例模式和用法 高级 uvm_resource_db 技术 包括 Cliff 即将发表的关于 uvm_resource_db 和虚拟序列的论文中的材料。 • 比较 OVM set_config_* 命令、uvm_config_db API 和 uvm_resource_db API • 深入了解 set_config_* 命令的工作原理及其缺点 • 为什么工程师不应该在 uvm_config_db#()::get 命令上使用断言 • 为什么 OVM set_config_* 命令在 UVM 中被弃用 • 深入研究 UVM 资源数据库 • 为什么 95% 以上的工程师使用 uvm_config_db 以及为什么他们应该使用 uvm_resource_db • uvm_config_db API 及其局限性 • uvm_resource_db 及其如何消除 uvm_config_db 的限制 • 在最近的大型验证项目中使用 uvm_resource_db 的良好体验 • 实验室:uvm_config_db 和 uvm_resource_db 的使用(完整的 UVM 自检测试台)
Hirotaka Iwaki, MD, Cornelis Blauwendraat, PhD, Hampton L. Leonard, MS, Ganqiang Liu, PhD, Jodi Maple-Grødem, PhD, Jean-Christophe Corvol, MD, PhD, Lasse Pihlstrøm, MD, PhD, Marlies van Nimwegen, PhD, Samantha J. Hutten, PhD, Khanh-Dung H. Nguyen, PhD, Jacqueline Rick, PhD, Shirley Eberly, MS, Faraz Faghri, MS, Peggy Auinger, MS, Kirsten M. Scott, MRCP, MPhil, Ruwani Wijeyekoon, MRCP, Vivianna M. Van Deerlin, MD, PhD, Dena G. Hernandez, PhD,Aaron G. Day-Williams,博士,Alexis Brice,医学博士,Guido Alves,MD,PhD,Alastair J. Noyce,MRCP,PhD,Ole-BjørnTysnes,MD,PhD,PhD,Jonathan R. Evans,Mrcp,Mrcp,Phd,Phd P. Breen,Mrcp,Mrcp,Phd,Phd,Phd,Ph. Fabrice Danjou,医学博士,博士,David K. Simon,医学博士,博士,伯纳德·拉维纳(Bernard Ravina)沃伦堡(Warrenburg)医学博士,Jacobus J.van Hilten,医学博士,博士,Clemens R. Scherzer,医学博士,Andrew B. Singleton,PhD和Mike A. Nalls,博士
方法和结果:明显地分析了严重的胎儿先天性心脏病的96个术语单例怀孕的胎盘,以分析宏观和微观病理学。我们应用了胎盘病理严重程度评分,将胎盘异常与神经系统结果联系起来。产后,前磁共振成像用于分析脑体积,旋转和脑损伤。胎盘分析显示以下异常:孕妇血管不良灌注病变为46%,红细胞成核的37%,慢性炎性病变为35%,30%的成熟延迟,胎盘体重在28%以下的胎盘重量低于10%。胎盘病理学的严重程度与皮质灰质,深灰质,脑干,小脑和总脑体积负相关(r = -0.25至-0.31,所有p <0.05)。在线性回归中校正磁共振成像处的月经后年龄时,该关联对于皮质灰质,小脑和总脑体积仍然很重要(调整后的R 2 = 0.25-0.47,所有P <0.05)。
K. Lisa Yang Integrative Computational Neuroscience (ICoN) Fellowship $100,000 2021-2022 Brain and Cognitive Sciences Graduate Student Fellowship, MIT $45,000 2020-2021 Brain and Cognitive Sciences Graduate Student Fellowship, MIT $45,000 2019-2020 Henry E. Singleton Graduate Student Fellowship, MIT BCS $45,000 2018-2019 HOLUBOW研究生奖学金,麻省理工学院BCS $ 45,000 2018-2019 NSERC加拿大研究生奖学金 - 博士学位(3岁,拒绝)$ 35,000 $ 35,000/YR 2019-2022 NSERC NSERC加拿大加拿大研究生奖学金 - 硕士学位$ 17,500 2017-2017-2017-2017-2018校长奖学金,沃特鲁堡大学奖学金,沃特卢堡大学奖学金5,000 $ 5,000 $ 5,000毕业生 - 2018年 - 2018年 - 2018年 - 2018年 - 2018年 - 2018年。奖学金(Match eng),滑铁卢大学$ 5,000 2017-2017-2018 QEII -GRADUDE奖学金奖学金$ 15,000 $ 15,000 2016-2016- 2017年总统滑铁卢研究生奖学金,滑铁卢大学$ 5,000 2016-2016-2017欧洲神经网络社会协会学生奖$ 400 2016年春季Waterloo毕业生奖学金2016年秋季奖学金2016年秋季$ 1667秋季学生$ 4 000年$ 4,000年000年$ 4,000年000年$ 4,000年。滑铁卢大学本科研究助理$ 800冬季
方法和结果:明显地分析了严重的胎儿先天性心脏病的96个术语单例怀孕的胎盘,以分析宏观和微观病理学。我们应用了胎盘病理严重程度评分,将胎盘异常与神经系统结果联系起来。产后,前磁共振成像用于分析脑体积,旋转和脑损伤。胎盘分析显示以下异常:孕妇血管不良灌注病变为46%,红细胞成核的37%,慢性炎性病变为35%,30%的成熟延迟,胎盘体重在28%以下的胎盘重量低于10%。胎盘病理学的严重程度与皮质灰质,深灰质,脑干,小脑和总脑体积负相关(r = -0.25至-0.31,所有p <0.05)。在线性回归中校正磁共振成像处的月经后年龄时,该关联对于皮质灰质,小脑和总脑体积仍然很重要(调整后的R 2 = 0.25-0.47,所有P <0.05)。
作者按字母顺序列出。我们感谢Mario Curiki,Georgy Kalashnov和Ruying Gao的出色研究帮助。We thank Susan Athey, Simon Freyaldenhoven, Talia Gillis, Paul Goldsmith-Pinkham, Damian Kozbur, Danielle Li, Sendhil Mullainathan, Ashesh Rambachan, Amit Seru, Ken Singleton, PR Stark, Chenzi Xu, Louis Kaplow, Kathryn Spier, the FinRegLab team, and seminar and conference participants at Stanford, Yale, Harvard, Zurich, Oxford, the NBER Summer Institute, Stanford SITE, the New Perspectives on Consumer Behavior in Credit and Payments Markets Conference, the AEA Annual Meeting, the FTC, ENSAI, the OCC, EC, the Artificial Intelligence and Big Data in Finance Research (ABFR) Forum, NASMES, the Machine Learning in Economics Summer Institute, and the 2nd Zurich AI + Economics Workshop for helpful discussions and comments.我们感谢斯坦福大学以人工智能(HAI)和亚马逊网络服务的慷慨支持。任何错误或遗漏都是作者的责任。该手稿取代了一个早期版本,该版本已在EC'22上接受并呈现,其扩展摘要发表为:Blattner,Laura,Scott Nelson和Jann Spiess(2022)。解开黑匣子:调节算法决定。在第23届ACM经济学和计算会议论文集(EC'22),第559页。
上午 9:00 - 9:30:卡内基梅隆大学葡萄牙分校主任 Inês Lynce、Nuno Nunes、José MF Moura 致开幕词;部长 Elvira Fortunato 地点:Bosch Sparks 会议室,5201 Scott Hall 上午 9:30 - 11:45:CMU 葡萄牙学生演讲 地点:Bosch Sparks 会议室,5201 Scott Hall Afonso Amaral,EPP 双学位博士 Margarida de Almeida Cruz Ferreira,CS 双学位博士; LSCRP GOLEM Manuel Francisco Reis Carneiro,ECE 双学位博士; LSCRP WoW Sofia Martins,ECE 双学位博士; LSCRP FLOYD Gabriel Moreira,LTI 双学位博士; LSCRP iFetch Catarina Fidalgo,HCII 双学位博士 Luis Borges,LTI 双学位博士 Maria de Loura Casimiro,SE 双学位博士 Tamas Karacsony,机器人附属博士 12:00pm- 1:30pm:与 CMU 葡萄牙学生共进午餐 地点:Singleton 室,4 楼 Roberts Engineering Hall 1:45pm- 4:30pm:CMU 葡萄牙大规模合作研究项目和探索性研究项目演示 地点:Bosch Sparks 会议室,5201 Scott Hall SyNAPSE(ERP)- Justine Sherry,CMU CAMELOT(LSCRP)- David Garlan,CMU; Paulo Marques,Feedzai
摘要:本研究关注的是读心术机器将如何连接起来,最初是通过弱人工智能,然后是与强人工智能相结合,这一方面将不再像现在这样具有简单的医疗作用,而是监视和监控个人——这一方面正引领我们走向未来的技术全景奇点。因此,本文的总体目标是提出人性的本体论稳定性问题,在读心术机器的技术奇点范围内,这会导致自主性的丧失和人类思想自由度的降低。在这个范式中,未来技术奇点时代的假设被预示为各种因素的累积,其中人工智能在人类监督的技术全景系统中以权力表现/施加的新世界秩序的形式相对于人类主体占据主导地位——即“单例”。理论目标分析了福柯全景机制(Foucault,1995、2003、2006、2008)的“去领土化”现象(Deleuze & Guattari,2000、2005)——该机制基于“生物权力”的“生命政治”体系——及其在技术全景奇点“领土”中的“再领土化”,其中强人工智能“单例”场景(Bostrom,2004、2006)代表了存在向硬技术决定论的异化。
植物协调使用细胞表面和细胞内的免疫受体来感知病原体并发起免疫反应。病原体识别的细胞内事件主要由核苷酸结合和富含亮氨酸重复序列 (NLR) 类免疫受体介导。在感知病原体后,NLR 会触发强大的广谱免疫反应,通常伴有一种称为过敏反应的程序性细胞死亡形式。一些植物 NLR 充当多功能单细胞受体,结合了病原体检测和免疫信号传导。然而,NLR 也可以在功能专门互连受体的高级对和网络中发挥作用。在本文中,我们介绍了植物 NLR 生物学的基本方面,重点介绍了 NLR 网络。我们重点介绍了 NLR 结构、功能和激活方面的一些最新进展,并讨论了调节剂 NLR、NLR 的病原体抑制和 NLR 生物工程等新兴主题。需要采用多学科方法来解开这些 NLR 免疫受体对和网络如何发挥作用和进化。回答这些问题有可能加深我们对植物免疫系统的理解,并开启抗病育种的新时代。