摘要 — 平面双面冷却功率模块因其体积小、散热性能好、封装寄生电感低等特点,在电力驱动逆变器中逐渐流行起来。然而,由于功率模块的器件芯片和两个基板之间采用刚性互连,其可靠性仍令人担忧。本文介绍了一种由低温烧结银制成的多孔中介层,以降低模块中的热机械应力。设计、制造并表征了一种由两个 1200 V、149 A SiC MOSFET 组成的双面冷却半桥模块。通过使用烧结银中介层代替实心铜中介层,我们的模拟结果表明,在总功率损耗为 200 W 时,最脆弱界面(中介层附着层)的热机械应力降低了 42%,SiC MOSFET 的热机械应力降低了 50%,而结温仅上升了 3.6%。烧结银中介层可轻松制成所需尺寸,无需后续加工,也无需进行任何表面处理,即可通过银烧结进行芯片粘合和基板互连。多孔中介层在低力或低压力下也可变形,这有助于适应平面模块结构中的芯片厚度和/或基板间间隙变化,从而简化模块制造。对制造的 SiC 模块电气性能的实验结果验证了使用多孔银中介层制造平面双面冷却电源模块的成功性。
粉末到散装过程,例如添加剂制造和金属注塑成型(MIM),为复杂的金属设计和制造带来了巨大的潜力。但是,添加剂制造过程通常由于局部强度而引起的高残余应力和质地。mim是一个极好的批处理制造过程;然而,由于缓慢的烧结过程,它不适用于快速筛选和开发新的金属成分和结构。在此,据报道,超快的高温烧结(UHS)过程可以使散装金属/合金和金属间化合物的快速合成和烧结。在此过程中,将元素粉末混合并压入颗粒中,然后在1000至3000°C之间的温度下仅在几秒钟内烧结。用众多的熔点证明了三种代表性组成,包括纯属金属,金属间和多元合金。金属烧结的UHS过程是特定的非物质,除了非常快速,这使其适合于材料发现。此外,烧结方法不对样品施加压力,使其与3D打印和其他复杂结构的加法制造过程兼容。这种快速的烧结技术将极大地促进金属和合金的开发和制造。
04 2020,Ankara,土耳其摘要。在这项研究中,B 4 C(5和10wt。%)颗粒增强的AL-15SI-2.5CU-0.5MG(ECKA Alumix231®)铝基质复合材料是通过冷媒体/烧结技术生产的。在三个不同的温度(555°C,580°C,605°C)下进行烧结过程。对所获得的样品进行密度测量,还检查了微结构分析和硬度测试。根据ASTM B962-08,通过Archimedes技术测量样品的密度。光学显微镜和扫描电子显微镜(SEM)用于显微结构研究。大智能测量是用Brinell硬度进行的。样品的绿色密度随着B 4 c wt。%的增加而降低。可以确定,随着烧结温度的升高,所有样品的密度均降低。据观察,随着烧结温度的升高,孔隙率会增加,孔变得更大。通过SEM和EDS分析确定 Al富含的固体溶液,主要Si和Cu和富含MG的相。 虽然在5wt。%颗粒增强复合材料中的硬度增加,但观察到10wt。%增强复合材料的硬度降低。 由铝制231粉末产生的样品在555°C时给出了最高的硬度值。 这些技术之一是粉末冶金(P/M)技术。 P/M技术自1990年代以来吸引了注意力研究人员。 已经尝试了工程材料的机械性能Al富含的固体溶液,主要Si和Cu和富含MG的相。虽然在5wt。%颗粒增强复合材料中的硬度增加,但观察到10wt。%增强复合材料的硬度降低。由铝制231粉末产生的样品在555°C时给出了最高的硬度值。这些技术之一是粉末冶金(P/M)技术。P/M技术自1990年代以来吸引了注意力研究人员。已经尝试了工程材料的机械性能关键字:粉末冶金,金属基质复合材料,密度,微观结构,硬度©2020由ICMATSE发布的引言工程材料具有各种化学成分和机械性能,使用不同的生产技术生产。
摘要:高熔点(HMP)无铅焊料、混合烧结和瞬态液相烧结(TLPS)是有望替代高铅焊料的新兴无铅替代品。无铅焊料与现有的夹片键合封装高铅焊接工艺完全兼容。混合烧结的好处是它比无铅或高铅焊料具有更高的热导率和电导率。在本研究中,首先通过芯片剪切测试评估了十种材料(包括无铅焊料、混合烧结膏和 TLPS)。在初步材料筛选之后,两种无铅焊料(焊料 1 和 2)、两种混合银烧结膏(烧结 i 和 ii)和一种 TLPS 进行内部样品组装。对于无铅焊料,借助真空回流进行了工艺优化,以降低空洞率。由于银-铜烧结比银-银烧结扩散慢且不均衡,为增强混合银烧结,需进行优化,包括对芯片金属化进行银精加工,对引线框架的夹片和键合区域进行银电镀。在 0 小时封装电气测试中,焊料 1 和烧结 i 通过并送去进行可靠性测试,而焊料 2、烧结 ii 和 TLPS 分别因金属间化合物 (IMC) 开裂、材料渗出和芯片开裂而失败。在可靠性测试中,早期可行性研究定义了热循环 (TC) 1000 次、间歇工作寿命 (IOL) 750 小时和高加速温湿度应力测试 (HAST) 96 小时的基本方案。75 个烧结 i 单元中有 1 个在 TC 1000 次循环中失败,原因是银烧结结构和芯片底部金属化之间的分离。焊料1无缺陷地通过了基本方案,接下来需要将材料的可加工性和夹持强度提高到与高铅焊料相当的水平。
PA-12 粉末原料中存在的低分子量化合物的高分辨率质谱 (ESI-MS) 分析 PA-12 粉末原料中存在的 CHCl 3 可溶性低分子量物质的 ESI-MS 质谱如图 S2 所示。该质谱是在正离子模式下通过直接注入稀释的 CHCl 3 溶液获得的。文献中之前已详细描述了使用液相质谱法鉴定从聚酰胺材料中迁移出的十二内酰胺单体、二聚体和三聚体物质的方法。1 Irganox 1098 是长链脂肪族聚酰胺材料中常用的抗氧化剂。2
在炼铁过程中,高炉是还原铁矿石的多相反应器。在此过程中,铁矿石和焦炭从炉顶装入,高温还原气体从炉底引入。随着气体上升,还原并熔化铁矿石,在粘结带中形成液态铁和炉渣。液体渗透过焦炭床到炉缸。在铁矿石的还原过程中,矿石软化,矿层被堆积的炉料压缩。众所周知,由于粘结带中矿石软化引起的结构变化对炉内气体渗透性有很大影响。矿石的软化行为受各种因素的影响,例如化学成分、还原气体成分、温度、物理性质等。为了了解粘结带,已经进行了几项实验来研究炉料的高温性质 1-6) 以及气体流动对粘结带中液体流动的影响
电场和磁场为无机材料的合成、加工和微观结构调整提供了额外的自由度。[1] 与传统烧结技术相比,电流辅助烧结 (ECAS) 技术因显着增强和加速了烧结动力学而具有极好的前景,在先进材料的加工中非常有前景。[2 – 7] 从 100 多年前的第一项专利开始,如今专利和文献中描述了 50 多种不同 ECAS 技术原理。[3] 通常,可通过以下方式实现高加热速率和低停留时间的短期烧结:1) 在导电工具中间接加热非导电粉末,通过焦耳效应加热并将热量传导给粉末; 2) 通过感应或热辐射间接加热非导电粉末,直至达到起始温度,此时电流开始流过样品,因此可以直接加热;3) 通过焦耳效应直接将能量耗散在样品内,直接加热导电粉末;4) 通过样品突然释放存储在电容器中的能量,超快速直接加热导电粉末。粉末和工具材料的电导率主要决定样品是直接加热还是间接加热。金属、合金和特殊陶瓷材料,如 TiC、TiN、Ti(C,N)、MAX 相(M = 过渡金属,A = A 组元素,X = C 或 N)、WC、TiB2 和 ZrB2,作为超高温陶瓷 (UHTC),可以在场辅助烧结技术/放电等离子烧结 (FAST/SPS) 模式下直接加热,因为它们的电导率比通常用作工具材料的石墨的电导率高几个数量级。反之亦然,大多数氧化物(Al2O3、ZrO2、YSZ、MgO、CeO2、掺杂钆的二氧化铈 [GDC] 等)和其他陶瓷,如 BN、Si3N4、SiC 和 B4C,由于其低电导率,则间接加热。通过施加单轴压力可以进一步提高 ECAS 技术的效率,这还可以支持烧结动力学,从而能够降低烧结温度
Dive 2,Sunbury News,Business Journal Daily.com Sintov, ND,& Schuitema, G. (2018)。奇怪的组合还是完美的一对?产学研合作中的紧张与机遇。能源政策,117,247-251。doi:10.1016/j.enpol.2018.03.021 Ryutov, T.、Sintov, N.、*Zhao, M.,& John, RJ (2018)。最终用户遵守组织信息安全政策的行为指标。信息隐私与安全杂志,13,260-281。Sintov, ND、Seyranian,& Lyet, A. (2018)。促进保护技术的应用:以野生动物执法护林员为例的研究。Oryx:国际保护杂志,53(3),479-483。 doi: 10.1017/S0030605317001533 Sintov, ND, *Geislar, S., & *White, LV (2017)。认知可及性在亲环境行为溢出效应中的作用:家庭食物垃圾管理社区实地实验结果。环境与行为,51,50-80。doi:10.1177/0013916517735638 *White, L.,V. & Sintov, N. (2017)。你驾驶什么:环保主义者和社会创新者的象征主义推动电动汽车的采用意愿。交通研究 A 部分:政策与实践,99,94-113。doi.org/10.1016/j.tra.2017.03.008 Sintov, ND, & Schultz, PW (2017)。通过可调节的绿色默认值使智能家居更具可持续性。《可持续性》(智能家居特刊),第 9 期,doi:10.3390/su9040622
平台)................................................................................................................ 38
7.9 应急、救援和生存设备 ...................................................................................................................... 36 7.9.1.1 应急设备:所有飞机 .............................................................................................................. 36 7.9.1.2 紧急出口设备 - 乘客 ............................................................................................................. 36 7.9.1.3 视觉信号设备 ............................................................................................................................. 43 7.9.1.4 生存工具包 ............................................................................................................................. 43 7.9.1.5 紧急定位发射器 ............................................................................................................................. 44 7.9.1.6 便携式灭火器 ............................................................................................................................. 45 7.9.1.7 盥洗室灭火器 ............................................................................................................................. 46 7.9.1.8 盥洗室烟雾探测器 ............................................................................................................................. 46 7.9.1.9 救生斧........................................................................................................................... 47 7.9.1.10 标记闯入点 .........................................................................................