大豆是许多国家的主要作物,因其营养特性而被广泛用于从人类食品到动物产业。从经济角度来看,谷物链将大量资金转移到生产国的经济中。然而,与世界各地的其他农产品一样,大豆的最终产量可能会受到干旱等非生物环境压力的严重影响。由于豆荚和谷粒中的花朵可以最大限度地减少缺水造成的损害,研究人员一直致力于了解与开花过程相关的基因及其相互作用。本文介绍了一篇专门介绍大豆开花过程及其基因网络的综述,描述了基因相互作用以及基因如何在这一复杂机制中发挥作用,该机制也受日光和昼夜节律等环境触发因素的支配。目的是收集有关大豆开花过程的信息和见解,旨在提供有用的知识,以帮助开发耐旱大豆品系,最大限度地减少因开花延迟或提前而造成的损失,从而抑制财务和生产力损失。
大豆是全球重要的工业、食品和经济作物。尽管大豆在现在和未来的经济中具有重要意义,但其生产却受到破坏性仓储害虫豆象 ( Callosobru- chus chinensis ) 的严重阻碍,造成了相当大的产量损失。因此,鉴定与大豆抗豆象相关的基因组区域和候选基因至关重要,因为它有助于育种者开发具有更高抗性和品质的大豆新品种。在本研究中,使用全基因组关联研究的 mrMLM 模型的 6 种多位点方法来剖析 100 种不同大豆基因型在 4 个性状上的豆象抗性的遗传结构:成年豆象羽化百分比 (PBE)、体重减轻百分比 (PWL)、中位发育期 (MDP) 和 Dobie 易感指数 (DSI),使用 14,469 个单核苷酸多态性 (SNP) 标记进行基因分型。使用最佳线性无偏预测因子 (BLUP),通过 mrMLM 模型鉴定了 13 个数量性状核苷酸 (QTN),其中 rs16_14976250 与 1 个以上的抗豆象性状相关。因此,已鉴定的与抗性状相关的 QTN 可用于标记辅助育种,以准确快速地筛选抗豆象的大豆基因型。此外,对 Phytozome 大豆参考基因组进行的基因搜索鉴定了 27 个潜在候选基因,这些基因位于最可靠 QTN 上游和下游 478.45 kb 的窗口内。这些候选基因表现出与各种大豆抗性机制相关的分子和生物学功能,因此可以纳入农民偏爱的易受豆象侵害的大豆品种中。
尽管CRISPR-Cas9技术在大豆遗传改良中得到了迅速应用,但是由于经典的PAM(protospacer vicinity motif)的限制,很难实现大豆复杂基因组中特定位点的靶向编辑。本研究开发了一种由SpRY介导的无PAM大豆基因组编辑系统。通过对大豆代表性农艺性状目标进行靶向编辑并评估结果,证明SpRY蛋白可以在大豆的宽松PAM位点实现高效的靶向诱变。此外,基于SpRY的胞嘧啶碱基编辑器SpRY-hA3A和腺嘌呤碱基编辑器SpRY-ABE8e均能分别精准地诱导大豆C到T和A到G的转换。因此,我们的数据表明SpRY工具箱可以以无PAM的方式编辑大豆基因组序列,突破了大豆基因组编辑技术系统中限制性的PAM障碍。更重要的是,我们的研究丰富了大豆基因组编辑工具,对大豆育种中的精准编辑和分子设计具有重要的实际应用价值。
随后,会议与分为较小群体的与会者一起进行,并努力确定未解决的研究领域以及进行此类工作的相关挑战。讨论的主题包括技术,生物学,更有效地利用资源,对下一代研究人员进行教育,实施工程资源以更好地存储种子,地下以及上面的表型以及与气候变化相关的许多其他主题。此外,关于法规引起的某些除草剂,杀虫剂和杀菌剂的丧失以及大豆研究人员如何工作以寻找替代方案的损失。确定的挑战包括需要为长期项目提供资金,并通过行业和政府来源获得资金支持。研究人员还表明,除了上述主题清单外,还需要收集更多农民和行业的意见,特别是与改善和采用可持续性实践有关。
环境足迹计算基于巴西农业研究公司Embrapa的州特异性二级农业数据,该数据由《农业综合企业巴西统计年鉴》汇编而成。此农业数据包括用于检查,收益率,受精信息,灌溉数据等。包括来自4个巴西国家的数据:Goiás(GO),Minas Gerais(MG),Mato Grosso(MT)和Paraná(PR)。根据Protera认证的大豆的起源使用加权平均值。近年来尚未更新数据,因此对于没有可用的农业数据的两个状态:Roraima(RR)和Rondônia(RO)(RO)构成了近似值。对于RO状态,使用MT状态的农业数据由于其接近性而使用,对于RR状态,所有四个可用状态的平均值被使用,因为没有一个可用的状态特别接近。由于这两种状态对普罗拉(Proterra)认证的大豆的总贡献较小(见表1),这些额度对所提供的结果几乎没有影响。
1. 安徽农业大学生命科学学院,合肥 230036,中国 2. 安徽农业大学前沿科学研究院生物育种技术研究中心,合肥 230036,中国 3. 百瑞生物技术有限公司,济南 250000,中国 4. 中国农业科学院作物科学研究所/国家南方研究院,农业农村部基因编辑技术重点实验室(海南),三亚 572025,中国 5. 南方科技大学,深圳 518055,中国 6. 海南省崖州湾种子实验室,三亚 572024,中国 † 这些作者对这项工作做出了同等贡献。 * 通信:朱建康(zhujk@sustech.edu.cn);朱建华(zhujh@ahau.edu.cn,朱博士全权负责与本文相关的所有材料的分发)
大豆在全球种植,用于油和蛋白质来源,作为生物燃料的食物,饲料和工业原料。在过去的世纪中,大豆产量的稳定增加主要归因于遗传介导,包括杂交,诱变和转基因。但是,使用转基因技术的遗传资源限制和复杂的社会问题阻碍了大豆改善,以满足全球对大豆产品需求的快速增加。基因组学和特异性核酸酶(SSNS)基因组编辑技术的新方法已扩大了其种质中大豆遗传变异的扩展,并有可能精确地改良基因,以控制精英素养中重要的农学特征。ZFN,Talens和CRISPR/CAS9已在大豆改进基因组中的靶向缺失,添加,替代品和校正中进行了调整。参考基因组组装和基因组资源的可用性提高了使用当前基因组编辑技术及其新发展的可行性。本综述总结了大豆改进和未来方向的基因组编辑状态。
我在此提交一篇由 Audrey E. Birdwell 撰写的论文,题为“胰蛋白酶抑制剂在叶片中表达以阻止大豆食草的可能性”。我已检查了该论文的最终电子版形式和内容,并建议接受该论文,以部分满足植物科学专业理学硕士学位的要求。
摘要:大豆固氮消耗大量能量,导致根瘤和未接种根的能量代谢和线粒体活动存在显著差异。尽管线粒体转录本的 C 到 U RNA 编辑和内含子剪接在植物物种中很常见,但它们与根瘤功能的关系尚不清楚。在本研究中,我们进行了 RNA 测序以比较大豆根瘤和根中线粒体基因的转录本谱和 RNA 编辑。在线粒体转录本上共鉴定出 631 个 RNA 编辑位点,其中 12% 或 74 个位点在从根瘤、剥离根和未接种根中分离的转录本中存在差异编辑。这 74 个差异编辑位点中有 8 个位于 matR 转录本上,其中 RNA 编辑程度在根瘤样本中最高。还检查了线粒体内含子剪接的程度。根瘤和剥离根中几个内含子的剪接效率高于未接种根。这些包括 nad1 内含子 2 / 3 / 4、nad4 内含子 3、nad5 内含子 2 / 3、cox2 内含子 1 和 ccmFc 内含子 1。在根瘤中还观察到 nad4 内含子 1 的更高剪接效率、更高的 NAD4 蛋白丰度以及超复合物 I + III 2 的减少,尽管这些观察结果之间的因果关系需要进一步研究。
癌症治疗仍在发展中,一种方法是探索天然化合物作为治疗来源,以减少化疗不良结果可能引起的副作用。具有抗癌活性并正在开发为抗癌药物的药用植物之一是大豆(Glycine max (L.) Merr.)。已知食用大豆制品可降低乳腺癌 5 、前列腺癌 6 、结肠癌 7 和肺癌 8,9 的死亡率和发病率。大豆中的活性化合物是异黄酮类化合物(染料木黄酮、大豆黄素和黄豆黄素)、Bowman-Birk 蛋白酶抑制剂、Kunitz 胰蛋白酶抑制剂、谷甾醇、皂苷、凝集素和月桂素。9-10 异黄酮是大豆中黄酮类化合物的化合物,被称为强抗氧化剂。大豆对健康有很多好处,可以从异黄酮中获取。虽然已经开展了许多研究来了解异黄酮的抗癌潜力,但并非所有与大豆消费相关的抗癌作用都来自异黄酮。9 最近的研究表明,大豆中一种重要的抗癌化合物是一种生物活性肽:lunasin。10、11