CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
采用减压化学气相沉积法在 Si 0.4 Ge 0.6 虚拟衬底(VS)上循环外延生长 Ge/SiGe 超晶格,制备了三维(3D)自有序 Ge 纳米点。Ge 纳米点采用 Stranski-Krastanov 机理形成。通过 Ge/SiGe 超晶格沉积,分别获得了沿垂直和横向的点上点排列和〈100〉排列。研究了 Ge 纳米点的刻面和生长机制以及排列的关键因素。观察到两种类型的 Ge 纳米点:由 {105} 面组成的类金刚石纳米点和由 {113} 和 {519} 或 {15 3 23} 面组成的圆顶状纳米点。Ge 纳米点倾向于直接在前一周期的纳米点上方生长,因为这些区域表现出由埋藏的纳米点引起的相对较高的拉伸应变。因此,这种点对点对准对 SiGe 间隔层厚度很敏感,并且当 SiGe 间隔层变厚时,这种对准会变差。由于超晶格和 VS 之间的应变平衡,SiGe 间隔层中 45% 至 52% 的 Ge 含量会影响 Ge 纳米点的横向对准和尺寸均匀性。通过保持应变平衡,可以改善 3D 对准 Ge 纳米点的排序。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/acce06 ]
摘要:CRISPR-Cas(成簇的规律间隔的短回文重复序列 (CRISPR))和相关蛋白 (Cas9) 系统是一种年轻但研究充分的基因组编辑工具,可为多种遗传疾病提供合理的解决方案。具有 20 个碱基的用户定义间隔序列的单向导 RNA (sgRNA) 和 Cas9 内切酶构成了 CRISPR-Cas9 系统的核心。该 sgRNA 可以将 Cas9 核酸酶引导至任何基因组区域,该区域包含下游的原间隔相邻基序 (PAM) 并与间隔序列匹配。CRISPR-Cas9 基因组编辑技术在临床应用中面临的当前挑战是潜在的脱靶效应,可能导致 DNA 在错误位点裂解。脱靶基因组编辑混淆并削弱了 CRISPR-Cas9 的治疗潜力,此外还可能使人们对有关基因活动的科学发现产生怀疑。在本综述中,我们总结了减少 CRISPR-Cas9 基因组编辑脱靶效应的最新技术进展。关键词:CRISPR-Cas9、基因组编辑、脱靶效应、最新进展、综述
摘要:CRISPR-Cas(成簇的规律间隔的短回文重复序列 (CRISPR))和相关蛋白 (Cas9) 系统是一种年轻但研究充分的基因组编辑工具,可为多种遗传疾病提供合理的解决方案。具有 20 个碱基的用户定义间隔序列的单向导 RNA (sgRNA) 和 Cas9 内切酶构成了 CRISPR-Cas9 系统的核心。该 sgRNA 可以将 Cas9 核酸酶引导至任何基因组区域,该区域包含下游的原间隔相邻基序 (PAM) 并与间隔序列匹配。CRISPR-Cas9 基因组编辑技术在临床应用中面临的当前挑战是潜在的脱靶效应,可能导致 DNA 在错误位点裂解。脱靶基因组编辑混淆并削弱了 CRISPR-Cas9 的治疗潜力,此外还可能使人们对有关基因活动的科学发现产生怀疑。在本综述中,我们总结了减少 CRISPR-Cas9 基因组编辑脱靶效应的最新技术进展。关键词:CRISPR-Cas9、基因组编辑、脱靶效应、最新进展、综述
每日检查 ................................................................................................ 3-1 驾驶舱人机工程学 .............................................................................................. 3-3 控制柱和座椅垫块 ................................................................................ 3-7 坐垫和垫块状况 ................................................................................ 3-7 有限的飞行前检查 ...................................................................................... 3-7 起飞前检查 ............................................................................................. 3-8 挂钩程序 ............................................................................................. 3-8 Schweizer 滑翔机释放机制 ............................................................. 3-10 C of G 和前挂钩的使用 ............................................................................. 3-11 发射速度 ............................................................................................. 3-11
图 1. a. 带有 poly-A 读数的动态条形码示意图。b. 实验装置的示意图。c. 基于突变特征的条形码比例,结合两个系统的数据:对具有完整 PAM 基序的原型间隔物进行编辑(活性);不存在 PAM 基序(非活性);和未切割的 gRNA(原始)。d. 不同 gRNA 中原始条形码随时间的比例。e. 考虑不同 gRNA 之间的错配、间隙和间隙延伸,条形码随时间的变化。f. 具有 21 bp 间隔物(左)或 26 bp 间隔物(右)的 gRNA 的原始条形码随时间的比例。箱线图按不同时间点的平均间隔物长度着色(Cas9 系统)。g. 原始核苷酸随时间变化的百分比,将间隔物相对于 PAM 序列对齐(Cas9 系统)。h。考虑到按 Cas9 版本分类的所有不同 gRNA,C>T 突变随时间变化的百分比。对于所有箱线图,箱线表示四分位距 (IQR),每个箱线内的水平线表示中位数。
当定制至关重要时,光学参考腔 (ORC) 系列就是我们的解决方案。您可以从出色的适配、辅助仪器和服务组合中进行选择,并从我们设计多代超稳定激光系统的经验中获益。ORC 系列是法布里-珀罗型腔,其谐振腔垫片由超低膨胀玻璃 (ULE) 制成。腔体安装在密封真空外壳中,具有出色的温度稳定性,可实现低频率漂移。紧凑的设计确保最小的空间需求。ORC-Cubic 可作为 6U、19 英寸机架模块使用。它基于国家物理实验室授权的刚性安装的立方体垫片。ORC-Cylindric 使用由德国联邦物理技术研究院设计的圆柱形垫片,水平安装在四个支撑点上。在这里,机械锁定机制确保了便携性。有各种附加组件和选项可供定制:镜面基底有 ULE 或熔融石英 (FS) 两种,镜面涂层可以是离子束溅射 (IBS) 或晶体 (XTAL),当低热噪声至关重要时,需要后者。高反射涂层适用于很宽的波长范围,也可作为双重或三重高反射镜。输入耦合、PDH 锁定和输出监控模块可以牢固地安装到腔体上,从而省去了运输后的繁琐重新调整。每个系统都在组装过程中经过烘烤。内置的 NTC 和 Peltier 元件可通过真空馈通装置接触,从而允许在热膨胀系数 (CTE) 的零交叉处工作。可根据要求提供 CTE 特性。两种腔体也可不带外壳。