图 1. crRNA 性能受上游间隔物的 GC 含量影响 (A) CRISPR-Cas12a 操纵子由 Cas 基因和一个 CRISPR 阵列组成。(B) 每个 crRNA 由一个重复序列和一个间隔物组成。预处理重复序列包含一个 ~16-18-nt 片段,此处称为 CRISPR 分隔符,该片段由 Cas12a 和一种未知酶切除。(C) 在哺乳动物细胞中表达 Cas12a 阵列时,之前已省略了分隔符。我们想了解分隔符是否有助于使 crRNA 免受间隔物中二级结构的负面影响。(D) 我们设计了由两个 crRNA 组成的 CRISPR 阵列,第一个具有非靶向无义间隔物,第二个靶向 GFP 启动子,该启动子在 HEK293T 细胞中基因组整合。(E) 实验设置;分析 GFP 荧光作为阵列性能的衡量标准。 (F) CRISPR 阵列可以显示出对无义间隔物的组成的超敏感性。在极端情况下,将最后一个核苷酸从 T 替换为 G 可能导致 GFP 激活几乎完全终止。(G) 51 个 CRISPR 阵列的文库,其中第一个 crRNA 包含一个具有不同 GC 含量的无义间隔物,第二个 crRNA 靶向 GFP。无义间隔物的 GC 含量与 GFP 荧光之间存在强烈的负相关性。每个点代表 51 个 CRISPR 阵列中的一个(三个重复)。根据阵列启用的 GFP 荧光水平将阵列分为三组。框表示在 I 和 J 中分析的两组。(HJ) 对于每个组,计算了滑动 5-nt 窗口的平均 GC 含量。性能最佳的阵列是无义间隔物在其 3' 端恰好具有低 GC 含量的阵列。一些阵列因其无义间隔物的 GC 含量 ( G ) 而显示出意外的高或低 GFP 活性。这些阵列在其无义间隔物的 3' 端含有低 ( I ) 或高 ( J ) GC 含量,这表明最后几个碱基的 GC 含量是阵列性能的重要预测因素。HJ 中的阴影区域表示标准误差。( K ) 了解无义 crRNA 中 3-nt 区域 GC 含量的预测能力 (方法)。( L ) 显示预测的二级结构 (-Δ(最小自由能)) 和 51 个无义间隔物的 GC 含量之间关系的图。
在 SpaceR 和 Spacety 的联合项目(HELEN 项目)中,一个用于验证碎片清除技术的接近真实的测试环境正在开发中。在项目中,我们将使用 Omniverse 集成虚拟和物理组件,即高保真照片级真实感在轨模拟与零重力实验室设施(机器人实验室),以重现可靠的测试条件。HELEN 将展示 Omniverse 增强地面试验台进行高保真测试、验证和确认的潜力,我们相信这将与未来太空资源技术的发展息息相关。我们还认为,未来的碎片减缓工作应以回收碎片中存在的资源为目标,其中包括有价值的材料(铝、金、银),如 [1] 中指出的那样。
原核生物适应性免疫系统,CRISPR-CAS(群集定期间隔短的短滴虫重复序列;与CRISPR相关),需要靶向靶向入侵移动遗传元件(例如噬菌体)的间隔序列。先前的工作已经确定了驱动模型有机体基于CRISPR的免疫的进化的生态变量,铜绿假单胞菌PA14针对其噬菌体DMS3VIR,导致快速噬菌体灭绝。但是,尚不清楚这种获得的免疫力在细菌种群中是否以及如何稳定,以及这如何取决于环境。在这里,我们检查了30天的演化实验中CRISPR间隔者获取和损失的动态,并确定条件使免疫力长期维持之间的平衡与支持噬菌体持久性的替代抵抗策略之间的平衡。具体来说,我们发现初始噬菌体剂量和再感染频率都决定了是否长期保持获得的CRISPR免疫,并且噬菌体是否可以与细菌共存。在人口遗传学水平上,出现和CRISPR免疫的丧失与高水平的间隔多样性有关,随后由于携带菌毛相关突变的细菌的侵袭而下降。在一起,这些结果提供了CRISPR免疫获取和损失动态的高分辨率,并证明累积噬菌体负担决定了CRISPR对生态相关时间表的有效性。
(a) Prime Editor 活性报告基因 (PEAR) 的示意图。PEAR 的机制基于与 BEAR 相同的概念,并且包含相同的非活性剪接位点,如图 (a) 所示。PE 可以将“G-AC - AAGT”序列恢复为规范的“G-GT-AAGT”剪接位点。与 BEAR 不同的是,这里的 Prime 编辑发生在 DNA 的反义链上,因此,这种方法使我们能够将间隔序列定位在内含子内。这里,整个间隔的长度是可以自由调整的(显示为“N”-s)。剪接位点的改变的碱基显示为红色,编辑的碱基显示为蓝色。PAM 序列为深绿色,nCas9 为蓝色,融合的逆转录酶为橙色。
Cas9 分子由向导 RNA (gRNA) 引导至目标 DNA。这种短 RNA 片段 (gRNA) 与目标病毒 DNA 序列互补。这种特定的引导系统允许 Cas9 在非常特定的水平上切割 DNA。这种切割过程会破坏病毒。此外,原核生物可以保留并储存一段外来 DNA(称为“间隔物”)。间隔物将保留在 CRISPR 片段的回文序列之间,这允许原核生物保留以前感染的记忆。通过这种方式,病毒的任何再次感染企图都会被迅速阻止,攻击病毒将被摧毁。这基本上相当于人类免疫系统,它获取并保留抗原以防止再次感染。
为了建立持续的防御系统,细菌会将每一段病毒 DNA 从间隔序列中取出,并将其转录成一条 RNA 链。这条 RNA 链被称为向导 RNA (gRNA)。Cas 酶随后与 gRNA 结合,“加载”Cas 蛋白。gRNA-Cas(通常称为 CRISPR-Cas)一起在细胞中漂移。如果它们遇到与间隔序列匹配的外来 DNA,gRNA 将与其碱基配对,Cas 酶会将入侵者的基因组切成碎片,从而阻止病毒复制(图 3)。该系统仅切割特定于 RNA 间隔序列的 DNA。因此,CRISPR-Cas 可让细菌找到任何短 DNA 序列并精确攻击它。该系统使其他细菌防御系统(如限制性酶)看起来非常原始。
CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
摘要:智能防护服的开发将有助于检测接触体育,交通碰撞和其他事故的伤害。ECOFLEX,间隔织物和基于石墨烯的气凝胶的组合提供了多功能复合材料。在应变范围为40〜55%的应变敏感性,压力灵敏度为0.125 kpa -1在0〜15 kPa的压力敏感性,温度灵敏度为-0.648°C -1。进行50次撞击测试后,其保护系数仅从60%下降到55%。此外,它显示了热绝缘性能。有限元数值模拟分析的压缩和影响过程结果与实验结果非常吻合。ECOFLEX/AIRGEL/SPACER织物传感器表现出简单的结构,较大的压力应变,高灵敏度,柔韧性和易于制造,使其成为抗击负荷的智能保护服装的候选者。