摘要 — 美国在航天器充电研究方面有着悠久的历史,可以追溯到 1976 年的第一届航天器充电技术会议 (SCTC)。自第 14 届 SCTC 在荷兰举行以来,美国上一次向 SCTC 提交国家摘要,取得了重大进展。我们在此介绍自第 14 届 SCTC 以来进行的航天器充电工作的高级调查。我们的报告将包括美国太空部队、美国国家航空航天局 (NASA)、喷气推进实验室 (JPL)、约翰霍普金斯应用实验室 (APL)、工业界和学术界的工作。我们包括飞行贡献、最新设计规范、地面测试、建模和仿真、模型开发、设施、异常研究进展以及美国充电社区内的各种合作。索引术语 — 国家概况
长期微重力环境对人类生理学有许多有害影响。与长时间探索任务有关的此问题的最明显解决方案是纠正缺乏重力。这可以使用短臂人体离心机来完成,但似乎没有足够的有效性,也许是因为这种对策的持续时间很短和/或巨大的身体重力梯度。必须研究新的观点,例如查看(非常)长臂旋转系统是否会产生连续的1 g或部分重力场可能会解决此问题。除了有关宇航员微重力病理学的预期益处,此外,航天器本身之外,其机上(子)系统和过程可能会受益于旋转配置。在本文中,我们非常简短地解决了医疗问题,但是这项工作主要集中在工程,运营,生命支持,安全性和预算方面的优势,即首先在低地球轨道上不断旋转的航天器,然后在长期持续到火星。一个大型旋转航天器是可行的,并且可以负担得起,并且可以负担得起。它具有政府和商业用途的优势,但也鉴于太空旅游业的预期增加。它还将节省机组的时间和数十亿美元,以抵消微重力的影响。
摘要 - 未来的太空探索任务将在很大程度上依靠自主计划和执行(APE)技术来证明航天器的可靠性并降低运营成本。,这将需要对地面操作进行完整的修改,即,从当前指定预先计划的序列的实践来指定高级目标,后来将根据航天器的状态和可感知的环境来详细阐述,后来由板上APE详细说明。特别是,在下行链路期间确定任务结果是一项艰巨的任务。在本文中,我们使用下行链接的通道数据,EVR和至关重要的空间工艺模型重建了航天器在船上执行的操作(即,执行);我们还定量地比较了从“实际”运行与基于地面预测模拟的情况进行比较。要进行此定量比较,我们设计了基于两个相似性分数的N维动态时间扭曲(DTW)技术:(a)与执行任务相关的一项,其成本函数基于基于间隔的基于间隔的广义交叉点,而不是联合; (b)其他与飞船状态有关的其他成本函数基于归一化曼哈顿距离的关系。通过Neptune-Triton系统中多个Flyby的模拟案例研究,我们证明了我们的技术成功量化了ASSCECT的实际实际和预先分析之间的相似性,并评估其“家庭中”与“未家庭”的行为。为了降低相关的误报/负面因素,我们还设计了一个多目标评估指标,这是对任务和时间轴相关的相似性分数的加权总结。
基于石墨烯的材料允许在储能,电子开发,材料科学,光学,药物和水加工等领域的基本进展,这是由于其独特的二维结构,机械鲁棒性,较大的表面和高电导率。但是,几乎没有努力利用和研究这些材料来开发适合航天器应用的新水技术。这样的应用是将基于石墨烯的材料作为过滤介质的潜在用途。因此,研究这些新材料的吸附性能对于确定目前在具有水回收能力的太空车辆中使用/升级最先进的过滤媒体的机会至关重要。特别是如果由于扩展过滤能力而可以减少可消耗量的要求。通过在比较吸附和抗菌实验中测试许多基于石墨烯的材料,在石墨烯研究中进行了早期的生命支持系统研究,其中探测了污染物的去除效率,最大吸附能力和细菌减少的抗菌实验。这项初步调查为使用基于石墨烯的材料作为过滤介质提供了实用性,并讨论了该航天器饮用水系统的这种前瞻性过滤技术的扩展和优化。
•有效的任务分配和协调:通过分发决策,航天器可以根据其能力,接近性和可用性自主分配任务。•临时网络通信:可扩展,稳健且自动自动配置的通信基础架构。
磁主动推进剂管理装置 (MAPMD) 系统旨在解决液体推进剂太空飞行中晃动造成的安全隐患。这种创新的磁主动晃动控制系统通过减少质量、改善表面波抑制和最大限度地减少体积侵入 (Santhanam 2012) 超越了传统的被动晃动挡板。在 Embry-Riddle 航空大学和 Carthage 学院合作进行的先前战斗实验中,观察到了残余晃动抑制,但由于控制力不足,有效的晃动阻尼未达到我们的预期。我们正在用多层超高磁导率金属玻璃膜重新设计磁膜,并正在开发载流线圈的优化配置,以增加磁力和磁场性能。这些进步有望将 MAPMD 系统的技术就绪水平 (TRL) 从 3 提升到 4,从而为微重力飞行测试铺平道路。 MAPMD 系统有望通过积极管理晃动动力学来提高液体推进剂太空飞行的安全性和性能。
为了扩展在遥远和复杂环境中进行操作中使用的自主权的有限范围,有必要进一步发展和成熟的自主权,这些自主权共同考虑了多个子系统,我们将其称为系统级自治。系统级别的自主权建立了解决各个子系统的相互矛盾信息的情况意识,这可能需要对基础航天器和板载模型的改进和互连。但是,由于对建模的假设和权衡的理解有限,因此设计板载模型以支持系统级别的功能带来了重大挑战。例如,排除交叉系统效应的简单车载模型可能会损害机构航天器的功效,而捕获航天器子系统和环境之间依赖性的复杂模型可能是在实现现实世界中的SpaceCecraft(E.G.G.G.G.G.G. ,有限的访问太空飞船和环境状态以及计算资源)。,有限的访问太空飞船和环境状态以及计算资源)。
• 制导、导航和控制 • 卫星星座遥感 • 轨迹设计和优化工具 • 任务操作软件 • 项目成本估算 • 辐射分析 • 图形渲染
SmallSat 任务时间表始于 NASA 艾姆斯研究中心,当时分别于 1972 年 3 月和 1973 年 4 月发射了先驱者 10 号和 11 号,两颗航天器的重量均小于 600 公斤。为了解决高发射节奏导致的质量增加和相关成本问题,NASA 于 1988 年启动了小型探测器 (SMEX) 计划,以鼓励开发质量在 ~60-350 公斤范围内的小型航天器。 1998 年,艾姆斯研究中心的 SmallSat 项目专注于月球探索,并发射了月球探测器(< 700 千克),随后于 2009 年发射了月球陨石坑观测和传感卫星 (LCROSS)(< 630 千克),并于 2013 年 9 月发射了月球大气和尘埃环境探测器 (LADEE)(~380 千克)。2010 年底,NASA 发射了其首颗微型卫星,名为快速、经济、科学和技术卫星 (FASTSAT),发射重量约为 180 千克。航天器重量的减轻、总体成本的降低以及科学能力的提高激发了人们对航空航天技术小型化和成熟度的兴趣,事实证明,这些技术能够以更低的成本完成更复杂的任务。
本报告每年更新一次,以收集 NASA 和其他来源提供的有关公开的小型航天器系统的大量新信息。虽然所有章节的更新都反映了小型航天器市场的增长,但我们也做出了一致努力,以更新最新技术发展领域,这些发展最终可能会弥补现有的技术差距。多年来,每章的组织方法已经日趋成熟,不仅可以捕捉当前最先进的 SmallSat 技术的发展状况,还可以提炼出读者在确定任务组件时需要考虑的设计考虑因素。章节组织包括技术介绍、技术可采购系统的当前发展状况以及所调查技术的汇总表。每章的内容都经过独特组织,以呈现关于航天器子系统的小型独立报告,并且以前版本的信息会根据新技术和成熟的技术以及参考任务(如果适用)进行更新。最后,作者试图以一致的方式使用“SmallSat”、“微型卫星”、“纳米卫星”和“CubeSat”这些术语,即使这些术语在航天工业中经常互换使用。