扫描选项................................................................................................................................ 61 光谱首选项.................................................................................................................................... 62 重建.................................................................................................................................... 64 检查摘要.................................................................................................................................... 64 心脏....................................................................................................................................... 65 剂量管理....................................................................................................................................... 66 患者数据....................................................................................................................................... 66 连接性....................................................................................................................................... 67 患者目录....................................................................................................................................... 67 窗口预设.................................................................................................................................... 68 图像标题.................................................................................................................................... 69 测量.................................................................................................................................... 70 保存图像.................................................................................................................................... 70 分割预设.................................................................................................................................... 71 报告.................................................................................................................................... 71 胶片页眉/页脚信息................................................................................................................... 72 查看应用程序................................................................................................................................ 72 机构信息................................................................................................................................... 74 许可................................................................................................................................................... 74 区域设置................................................................................................................................... 74 中文 DICOM 支持...................................................................................................................... 75
在这项工作中,检查了频谱定理在量子力学中进行自相关算子的应用。虽然经典物理学提供了描述相空间变量的确定性演变的不同方程(以牛顿定律的形式),但量子力学会演变出更抽象的波函数,这是量子希尔伯特空间的元素。发现相位空间变量的测量概率(可观察到的),可观察到可观察到的可观察到的可观察到相应的Hilbert空间上的自动接合操作员。量化运算符的规格分解提供了有关可观察到的可能值的信息。此外,可观察到的量子谱的不同部分将显示为不同的状态类型,这将通过具体示例来证明这一想法。最后,探索了光谱定理的不同公式,包括投影值评估的度量和分辨积分方法。这些不同的配方将进一步了解量子机械状态的物理理解。
在国际原子能机构的主持下,人们已经开展了创建标准光谱(国际原子能机构 Gl 测试光谱)和进行比对的工作 [9, 10]。Sanderson 和 Decker [11] 以及 Sanderson [12] 也使用标准光谱评估了软件系统。美国国家标准协会 (ANSI) 就如何测试 γ 射线光谱程序提出了建议 [13, 14],国际电工委员会 [15] 也给出了建议。在每种情况下,人们都对结果的可变性提出了严重担忧,并且这些人工生成的测试光谱的一些特性受到了批评,无论是否合理(Gilmore 和 Hemingway [16] 在概述中对此进行了讨论)。另一个问题是产生一个单一的品质因数来比较软件的可能性 [17]。
状态的局部密度(LDOS)正在成为探索古典波拓扑阶段的强大手段。但是,当前的LDOS检测方法仍然很少,仅适用于静态情况。在这里,我们引入了一种通用的动力学方法,以基于手性密度和局部光谱密度的动力学之间的优雅连接来检测静态和Floquet LDOS。此外,我们发现Floquet LDOS允许测量Floquet胶质光谱并识别拓扑π模式。为例,我们证明,无论拓扑角模式是否在能隙,频带或连续的能量光谱中,都可以通过LDOS检测来普遍识别静态和浮动高阶拓扑阶段。我们的研究开设了一种新的途径,利用动力学来检测拓扑光谱密度,并提供了一种通用的方法来识别静态和Floquet拓扑阶段。
我们提出了一种将航空磁力数据和卫星数据相结合的新方法,该方法应用了等效偶极子层和偶极子的球谐函数 (SH) 展开。该方法包括两个步骤:(1) 等效偶极子层的磁参数反演和 (2) 将磁参数转换为 SH 系数。使用这种方法,SH 分析可用于区域研究区域,例如,可以用卫星数据替换航空磁力数据的长波长范围。我们在澳大利亚磁异常图的第三版、第四版和第五版上测试了我们的方法,这些地图使用独立的航空磁力数据集进行了长波长校正。结果表明,在 SH 度 40 至 110 范围内(对应于半波长 180 至 500 公里),根据长距离控制线调整的磁异常图与 LCS-1 卫星模型具有良好的一致性,而澳大利亚磁异常图第三版在此光谱范围内对长波长的控制较差。我们的分析表明,即使是经过精心处理的第五版,如果用卫星数据替换长波长数据,也会受益匪浅。
拓扑材料的特点是具有拓扑非平凡的电子能带结构,从而获得了出色的传输特性。[1–6] 将这些奇异相开发成有用的应用的前景吸引了广泛的努力来识别和分类候选拓扑材料,证据是出现了许多基于电子能带连通性、[7–13] 基于对称性的指标、[7,14–21] 电子填充约束、[7,22,23] 和自旋轨道溢出的理论框架。[24–26] 这些框架有助于预测 8000 多个拓扑非平凡相,[27–34] 这是一片广阔的未开发实验领域。这为开发用于高通量筛选候选材料的互补实验技术提供了强大的动力。当前最先进的技术,如角分辨光发射光谱 (ARPES)、扫描隧道显微镜 (STM) 和
量子物理和计算机科学相交的一个基本问题是计算n个相互作用粒子系统的能量水平。这些是局部汉密尔顿H的特征值,这是一种作用于张量产品h≃(c d)⊗n的共轭 - 对称(Hermitian)线性操作员。局部属性意味着h是术语hη⊗i的总和,其中hη是k = o(1)张量因子的操作员,而i是其余因子上的身份。使用| v |的局部性结构产生了g =(v,e)的HyperGraph g =(v,e) = n,并由M Hyperedgesη∈E索引。根据张量产品空间的尺寸,计算能量水平的标准对角线化程序将需要指数时间。此类别中最著名的问题侧重于计算最低特征值,即基态能量。这概括了计算约束满意度问题的最佳值的问题Max-CSP,但是现在“可变分配”是具有指数级参数的向量。计算最低特征值,直到已知QMA [1](NP的量子类似物)已知为一定的逆多项式准确性。一个主要的开放问题是量子pcp-conture [2],它认为QMA是近似于Hamiltonian H = P
通过在神经网络反应和从生物系统中测得的神经网络反应进行回归,通常将神经网络的表示与生物系统的表示。许多不同的深层神经网络产生相似的神经预测,但尚不清楚如何在预测神经反应方面表现良好的模型之间进行区分。为了深入了解这一点,我们使用了一个最新的理论框架,该框架将回归的概括误差与模型和目标的光谱特性相关联。我们将该理论应用于模型激活和神经反应之间的回归情况,并根据模型特征谱,模型特征向量和神经反应的比对分解神经预测误差以及训练集的大小。使用这种分解,我们引入了几何措施来解释神经预测误差。我们测试了许多预测视觉皮层活动的深神经网络,并表明有多种类型的几何形状导致通过回归测量的神经预测误差低。这项工作表明,仔细分解代表性指标可以提供模型如何捕获神经活动的解释性,并指向改善神经活动模型的道路。